Tokyo Institute of Technology
Abstract:Non-stationary online learning has drawn much attention in recent years. Despite considerable progress, dynamic regret minimization has primarily focused on convex functions, leaving the functions with stronger curvature (e.g., squared or logistic loss) underexplored. In this work, we address this gap by showing that the regret can be substantially improved by leveraging the concept of mixability, a property that generalizes exp-concavity to effectively capture loss curvature. Let $d$ denote the dimensionality and $P_T$ the path length of comparators that reflects the environmental non-stationarity. We demonstrate that an exponential-weight method with fixed-share updates achieves an $\mathcal{O}(d T^{1/3} P_T^{2/3} \log T)$ dynamic regret for mixable losses, improving upon the best-known $\mathcal{O}(d^{10/3} T^{1/3} P_T^{2/3} \log T)$ result (Baby and Wang, 2021) in $d$. More importantly, this improvement arises from a simple yet powerful analytical framework that exploits the mixability, which avoids the Karush-Kuhn-Tucker-based analysis required by existing work.
Abstract:Optimizing policies based on human preferences is key to aligning language models with human intent. This work focuses on reward modeling, a core component in reinforcement learning from human feedback (RLHF), and offline preference optimization, such as direct preference optimization. Conventional approaches typically assume accurate annotations. However, real-world preference data often contains noise due to human errors or biases. We propose a principled framework for robust policy optimization under noisy preferences, viewing reward modeling as a classification problem. This allows us to leverage symmetric losses, known for their robustness to label noise in classification, leading to our Symmetric Preference Optimization (SymPO) method. We prove that symmetric losses enable successful policy optimization even under noisy labels, as the resulting reward remains rank-preserving -- a property sufficient for policy improvement. Experiments on synthetic and real-world tasks demonstrate the effectiveness of SymPO.
Abstract:While the performance of machine learning systems has experienced significant improvement in recent years, relatively little attention has been paid to the fundamental question: to what extent can we improve our models? This paper provides a means of answering this question in the setting of binary classification, which is practical and theoretically supported. We extend a previous work that utilizes soft labels for estimating the Bayes error, the optimal error rate, in two important ways. First, we theoretically investigate the properties of the bias of the hard-label-based estimator discussed in the original work. We reveal that the decay rate of the bias is adaptive to how well the two class-conditional distributions are separated, and it can decay significantly faster than the previous result suggested as the number of hard labels per instance grows. Second, we tackle a more challenging problem setting: estimation with corrupted soft labels. One might be tempted to use calibrated soft labels instead of clean ones. However, we reveal that calibration guarantee is not enough, that is, even perfectly calibrated soft labels can result in a substantially inaccurate estimate. Then, we show that isotonic calibration can provide a statistically consistent estimator under an assumption weaker than that of the previous work. Our method is instance-free, i.e., we do not assume access to any input instances. This feature allows it to be adopted in practical scenarios where the instances are not available due to privacy issues. Experiments with synthetic and real-world datasets show the validity of our methods and theory.
Abstract:Current machine learning systems are brittle in the face of distribution shifts (DS), where the target distribution that the system is tested on differs from the source distribution used to train the system. This problem of robustness to DS has been studied extensively in the field of domain adaptation. For deep neural networks, a popular framework for unsupervised domain adaptation (UDA) is domain matching, in which algorithms try to align the marginal distributions in the feature or output space. The current theoretical understanding of these methods, however, is limited and existing theoretical results are not precise enough to characterize their performance in practice. In this paper, we derive new bounds based on optimal transport that analyze the UDA problem. Our new bounds include a term which we dub as \emph{entanglement}, consisting of an expectation of Wasserstein distance between conditionals with respect to changing data distributions. Analysis of the entanglement term provides a novel perspective on the unoptimizable aspects of UDA. In various experiments with multiple models across several DS scenarios, we show that this term can be used to explain the varying performance of UDA algorithms.
Abstract:Recently, multi-view learning (MVL) has garnered significant attention due to its ability to fuse discriminative information from multiple views. However, real-world multi-view datasets are often heterogeneous and imperfect, which usually makes MVL methods designed for specific combinations of views lack application potential and limits their effectiveness. To address this issue, we propose a novel robust MVL method (namely RML) with simultaneous representation fusion and alignment. Specifically, we introduce a simple yet effective multi-view transformer fusion network where we transform heterogeneous multi-view data into homogeneous word embeddings, and then integrate multiple views by the sample-level attention mechanism to obtain a fused representation. Furthermore, we propose a simulated perturbation based multi-view contrastive learning framework that dynamically generates the noise and unusable perturbations for simulating imperfect data conditions. The simulated noisy and unusable data obtain two distinct fused representations, and we utilize contrastive learning to align them for learning discriminative and robust representations. Our RML is self-supervised and can also be applied for downstream tasks as a regularization. In experiments, we employ it in unsupervised multi-view clustering, noise-label classification, and as a plug-and-play module for cross-modal hashing retrieval. Extensive comparison experiments and ablation studies validate the effectiveness of RML.
Abstract:Recent years have witnessed a burgeoning interest in federated learning (FL). However, the contexts in which clients engage in sequential learning remain under-explored. Bridging FL and continual learning (CL) gives rise to a challenging practical problem: federated continual learning (FCL). Existing research in FCL primarily focuses on mitigating the catastrophic forgetting issue of continual learning while collaborating with other clients. We argue that the forgetting phenomena are not invariably detrimental. In this paper, we consider a more practical and challenging FCL setting characterized by potentially unrelated or even antagonistic data/tasks across different clients. In the FL scenario, statistical heterogeneity and data noise among clients may exhibit spurious correlations which result in biased feature learning. While existing CL strategies focus on a complete utilization of previous knowledge, we found that forgetting biased information is beneficial in our study. Therefore, we propose a new concept accurate forgetting (AF) and develop a novel generative-replay method~\method~which selectively utilizes previous knowledge in federated networks. We employ a probabilistic framework based on a normalizing flow model to quantify the credibility of previous knowledge. Comprehensive experiments affirm the superiority of our method over baselines.
Abstract:Multi-label learning (MLL) has gained attention for its ability to represent real-world data. Label Distribution Learning (LDL), an extension of MLL to learning from label distributions, faces challenges in collecting accurate label distributions. To address the issue of biased annotations, based on the low-rank assumption, existing works recover true distributions from biased observations by exploring the label correlations. However, recent evidence shows that the label distribution tends to be full-rank, and naive apply of low-rank approximation on biased observation leads to inaccurate recovery and performance degradation. In this paper, we address the LDL with biased annotations problem from a novel perspective, where we first degenerate the soft label distribution into a hard multi-hot label and then recover the true label information for each instance. This idea stems from an insight that assigning hard multi-hot labels is often easier than assigning a soft label distribution, and it shows stronger immunity to noise disturbances, leading to smaller label bias. Moreover, assuming that the multi-label space for predicting label distributions is low-rank offers a more reasonable approach to capturing label correlations. Theoretical analysis and experiments confirm the effectiveness and robustness of our method on real-world datasets.
Abstract:We propose action-agnostic point-level (AAPL) supervision for temporal action detection to achieve accurate action instance detection with a lightly annotated dataset. In the proposed scheme, a small portion of video frames is sampled in an unsupervised manner and presented to human annotators, who then label the frames with action categories. Unlike point-level supervision, which requires annotators to search for every action instance in an untrimmed video, frames to annotate are selected without human intervention in AAPL supervision. We also propose a detection model and learning method to effectively utilize the AAPL labels. Extensive experiments on the variety of datasets (THUMOS '14, FineAction, GTEA, BEOID, and ActivityNet 1.3) demonstrate that the proposed approach is competitive with or outperforms prior methods for video-level and point-level supervision in terms of the trade-off between the annotation cost and detection performance.
Abstract:In recent years, there has been a surge of interest in proving discretization bounds for sampling under isoperimetry and for diffusion models. As data size grows, reducing the iteration cost becomes an important goal. Inspired by the great success of the parallel simulation of the initial value problem in scientific computation, we propose parallel Picard methods for sampling tasks. Rigorous theoretical analysis reveals that our algorithm achieves better dependence on dimension $d$ than prior works in iteration complexity (i.e., reduced from $\widetilde{O}(\log^2 d)$ to $\widetilde{O}(\log d)$), which is even optimal for sampling under isoperimetry with specific iteration complexity. Our work highlights the potential advantages of simulation methods in scientific computation for dynamics-based sampling and diffusion models.
Abstract:Reinforcement Learning (RL) empowers agents to acquire various skills by learning from reward signals. Unfortunately, designing high-quality instance-level rewards often demands significant effort. An emerging alternative, RL with delayed reward, focuses on learning from rewards presented periodically, which can be obtained from human evaluators assessing the agent's performance over sequences of behaviors. However, traditional methods in this domain assume the existence of underlying Markovian rewards and that the observed delayed reward is simply the sum of instance-level rewards, both of which often do not align well with real-world scenarios. In this paper, we introduce the problem of RL from Composite Delayed Reward (RLCoDe), which generalizes traditional RL from delayed rewards by eliminating the strong assumption. We suggest that the delayed reward may arise from a more complex structure reflecting the overall contribution of the sequence. To address this problem, we present a framework for modeling composite delayed rewards, using a weighted sum of non-Markovian components to capture the different contributions of individual steps. Building on this framework, we propose Composite Delayed Reward Transformer (CoDeTr), which incorporates a specialized in-sequence attention mechanism to effectively model these contributions. We conduct experiments on challenging locomotion tasks where the agent receives delayed rewards computed from composite functions of observable step rewards. The experimental results indicate that CoDeTr consistently outperforms baseline methods across evaluated metrics. Additionally, we demonstrate that it effectively identifies the most significant time steps within the sequence and accurately predicts rewards that closely reflect the environment feedback.