Get our free extension to see links to code for papers anywhere online!Free extension: code links for papers anywhere!Free add-on: See code for papers anywhere!

Zhen-Yu Zhang, Siwei Han, Huaxiu Yao, Gang Niu, Masashi Sugiyama

To improve the ability of the large language model (LLMs) to handle complex reasoning problems, chain-of-thoughts (CoT) methods were proposed to guide LLMs to reason step-by-step, facilitating problem solving from simple to complex tasks. State-of-the-art approaches for generating such a chain involve interactive collaboration, where the learner generates candidate intermediate thoughts, evaluated by the LLM, guiding the generation of subsequent thoughts. However, a widespread yet understudied problem is that the evaluation from the LLM is typically noisy and unreliable, potentially misleading the generation process in selecting promising intermediate thoughts. In this paper, motivated by Vapnik's principle, we propose a novel comparison-based CoT generation algorithm that directly identifies the most promising thoughts with the noisy feedback from the LLM. In each round, we randomly pair intermediate thoughts and directly prompt the LLM to select the more promising one from each pair, allowing us to identify the most promising thoughts through an iterative process. To further model the noise in the comparison, we resort to the techniques of ensemble and dueling bandits and propose two variants of the proposed algorithm. Experiments on three real-world mathematical and reasoning tasks demonstrate the effectiveness of our proposed algorithm and verify the rationale of the direct pairwise comparison.

Via

Yuting Tang, Xin-Qiang Cai, Yao-Xiang Ding, Qiyu Wu, Guoqing Liu, Masashi Sugiyama

In reinforcement Learning (RL), an instant reward signal is generated for each action of the agent, such that the agent learns to maximize the cumulative reward to obtain the optimal policy. However, in many real-world applications, the instant reward signals are not obtainable by the agent. Instead, the learner only obtains rewards at the ends of bags, where a bag is defined as a partial sequence of a complete trajectory. In this situation, the learner has to face the significant difficulty of exploring the unknown instant rewards in the bags, which could not be addressed by existing approaches, including those trajectory-based approaches that consider only complete trajectories and ignore the inner reward distributions. To formally study this situation, we introduce a novel RL setting termed Reinforcement Learning from Bagged Rewards (RLBR), where only the bagged rewards of sequences can be obtained. We provide the theoretical study to establish the connection between RLBR and standard RL in Markov Decision Processes (MDPs). To effectively explore the reward distributions within the bagged rewards, we propose a Transformer-based reward model, the Reward Bag Transformer (RBT), which uses the self-attention mechanism for interpreting the contextual nuances and temporal dependencies within each bag. Extensive experimental analyses demonstrate the superiority of our method, particularly in its ability to mimic the original MDP's reward distribution, highlighting its proficiency in contextual understanding and adaptability to environmental dynamics.

Via

Hao Chen, Jindong Wang, Lei Feng, Xiang Li, Yidong Wang, Xing Xie, Masashi Sugiyama, Rita Singh, Bhiksha Raj

Weakly supervised learning generally faces challenges in applicability to various scenarios with diverse weak supervision and in scalability due to the complexity of existing algorithms, thereby hindering the practical deployment. This paper introduces a general framework for learning from weak supervision (GLWS) with a novel algorithm. Central to GLWS is an Expectation-Maximization (EM) formulation, adeptly accommodating various weak supervision sources, including instance partial labels, aggregate statistics, pairwise observations, and unlabeled data. We further present an advanced algorithm that significantly simplifies the EM computational demands using a Non-deterministic Finite Automaton (NFA) along with a forward-backward algorithm, which effectively reduces time complexity from quadratic or factorial often required in existing solutions to linear scale. The problem of learning from arbitrary weak supervision is therefore converted to the NFA modeling of them. GLWS not only enhances the scalability of machine learning models but also demonstrates superior performance and versatility across 11 weak supervision scenarios. We hope our work paves the way for further advancements and practical deployment in this field.

Via

Jialiang Tang, Shuo Chen, Gang Niu, Hongyuan Zhu, Joey Tianyi Zhou, Chen Gong, Masashi Sugiyama

Knowledge Distillation (KD) aims to learn a compact student network using knowledge from a large pre-trained teacher network, where both networks are trained on data from the same distribution. However, in practical applications, the student network may be required to perform in a new scenario (i.e., the target domain), which usually exhibits significant differences from the known scenario of the teacher network (i.e., the source domain). The traditional domain adaptation techniques can be integrated with KD in a two-stage process to bridge the domain gap, but the ultimate reliability of two-stage approaches tends to be limited due to the high computational consumption and the additional errors accumulated from both stages. To solve this problem, we propose a new one-stage method dubbed ``Direct Distillation between Different Domains" (4Ds). We first design a learnable adapter based on the Fourier transform to separate the domain-invariant knowledge from the domain-specific knowledge. Then, we build a fusion-activation mechanism to transfer the valuable domain-invariant knowledge to the student network, while simultaneously encouraging the adapter within the teacher network to learn the domain-specific knowledge of the target data. As a result, the teacher network can effectively transfer categorical knowledge that aligns with the target domain of the student network. Intensive experiments on various benchmark datasets demonstrate that our proposed 4Ds method successfully produces reliable student networks and outperforms state-of-the-art approaches.

Via

Wei Wang, Takashi Ishida, Yu-Jie Zhang, Gang Niu, Masashi Sugiyama

Complementary-label learning is a weakly supervised learning problem in which each training example is associated with one or multiple complementary labels indicating the classes to which it does not belong. Existing consistent approaches have relied on the uniform distribution assumption to model the generation of complementary labels, or on an ordinary-label training set to estimate the transition matrix. However, both conditions may not be satisfied in real-world scenarios. In this paper, we propose a novel complementary-label learning approach that does not rely on these conditions. We find that complementary-label learning can be expressed as a set of negative-unlabeled binary classification problems when using the one-versus-rest strategy. This observation allows us to propose a risk-consistent approach with theoretical guarantees. Furthermore, we introduce a risk correction approach to address overfitting problems when using complex models. We also prove the statistical consistency and convergence rate of the corrected risk estimator. Extensive experimental results on both synthetic and real-world benchmark datasets validate the superiority of our proposed approach over state-of-the-art methods.

Via

Jianing Zhu, Geng Yu, Jiangchao Yao, Tongliang Liu, Gang Niu, Masashi Sugiyama, Bo Han

Out-of-distribution (OOD) detection is important for deploying reliable machine learning models on real-world applications. Recent advances in outlier exposure have shown promising results on OOD detection via fine-tuning model with informatively sampled auxiliary outliers. However, previous methods assume that the collected outliers can be sufficiently large and representative to cover the boundary between ID and OOD data, which might be impractical and challenging. In this work, we propose a novel framework, namely, Diversified Outlier Exposure (DivOE), for effective OOD detection via informative extrapolation based on the given auxiliary outliers. Specifically, DivOE introduces a new learning objective, which diversifies the auxiliary distribution by explicitly synthesizing more informative outliers for extrapolation during training. It leverages a multi-step optimization method to generate novel outliers beyond the original ones, which is compatible with many variants of outlier exposure. Extensive experiments and analyses have been conducted to characterize and demonstrate the effectiveness of the proposed DivOE. The code is publicly available at: https://github.com/tmlr-group/DivOE.

Via

Shintaro Nakamura, Masashi Sugiyama

We study the real-valued combinatorial pure exploration of the multi-armed bandit in the fixed-budget setting. We first introduce the Combinatorial Successive Asign (CSA) algorithm, which is the first algorithm that can identify the best action even when the size of the action class is exponentially large with respect to the number of arms. We show that the upper bound of the probability of error of the CSA algorithm matches a lower bound up to a logarithmic factor in the exponent. Then, we introduce another algorithm named the Minimax Combinatorial Successive Accepts and Rejects (Minimax-CombSAR) algorithm for the case where the size of the action class is polynomial, and show that it is optimal, which matches a lower bound. Finally, we experimentally compare the algorithms with previous methods and show that our algorithm performs better.

Via

Wentao Yu, Shuo Chen, Chen Gong, Gang Niu, Masashi Sugiyama

Recently, Graph Transformer (GT) models have been widely used in the task of Molecular Property Prediction (MPP) due to their high reliability in characterizing the latent relationship among graph nodes (i.e., the atoms in a molecule). However, most existing GT-based methods usually explore the basic interactions between pairwise atoms, and thus they fail to consider the important interactions among critical motifs (e.g., functional groups consisted of several atoms) of molecules. As motifs in a molecule are significant patterns that are of great importance for determining molecular properties (e.g., toxicity and solubility), overlooking motif interactions inevitably hinders the effectiveness of MPP. To address this issue, we propose a novel Atom-Motif Contrastive Transformer (AMCT), which not only explores the atom-level interactions but also considers the motif-level interactions. Since the representations of atoms and motifs for a given molecule are actually two different views of the same instance, they are naturally aligned to generate the self-supervisory signals for model training. Meanwhile, the same motif can exist in different molecules, and hence we also employ the contrastive loss to maximize the representation agreement of identical motifs across different molecules. Finally, in order to clearly identify the motifs that are critical in deciding the properties of each molecule, we further construct a property-aware attention mechanism into our learning framework. Our proposed AMCT is extensively evaluated on seven popular benchmark datasets, and both quantitative and qualitative results firmly demonstrate its effectiveness when compared with the state-of-the-art methods.

Via

Wei Wang, Lei Feng, Yuchen Jiang, Gang Niu, Min-Ling Zhang, Masashi Sugiyama

Recently, learning with soft labels has been shown to achieve better performance than learning with hard labels in terms of model generalization, calibration, and robustness. However, collecting pointwise labeling confidence for all training examples can be challenging and time-consuming in real-world scenarios. This paper delves into a novel weakly supervised binary classification problem called confidence-difference (ConfDiff) classification. Instead of pointwise labeling confidence, we are given only unlabeled data pairs with confidence difference that specifies the difference in the probabilities of being positive. We propose a risk-consistent approach to tackle this problem and show that the estimation error bound achieves the optimal convergence rate. We also introduce a risk correction approach to mitigate overfitting problems, whose consistency and convergence rate are also proven. Extensive experiments on benchmark data sets and a real-world recommender system data set validate the effectiveness of our proposed approaches in exploiting the supervision information of the confidence difference.

Via