ColorfulClouds Technology Co., Ltd
Abstract:Air quality forecasting (AQF) is critical for public health and environmental management, yet remains challenging due to the complex interplay of emissions, meteorology, and chemical transformations. Traditional numerical models, such as CMAQ and WRF-Chem, provide physically grounded simulations but are computationally expensive and rely on uncertain emission inventories. Deep learning models, while computationally efficient, often struggle with generalization due to their lack of physical constraints. To bridge this gap, we propose PCDCNet, a surrogate model that integrates numerical modeling principles with deep learning. PCDCNet explicitly incorporates emissions, meteorological influences, and domain-informed constraints to model pollutant formation, transport, and dissipation. By combining graph-based spatial transport modeling, recurrent structures for temporal accumulation, and representation enhancement for local interactions, PCDCNet achieves state-of-the-art (SOTA) performance in 72-hour station-level PM2.5 and O3 forecasting while significantly reducing computational costs. Furthermore, our model is deployed in an online platform, providing free, real-time air quality forecasts, demonstrating its scalability and societal impact. By aligning deep learning with physical consistency, PCDCNet offers a practical and interpretable solution for AQF, enabling informed decision-making for both personal and regulatory applications.
Abstract:Environmental sensing is an important research topic in the integrated sensing and communication (ISAC) system. Current works often focus on static environments, such as buildings and terrains. However, dynamic factors like rainfall can cause serious interference to wireless signals. In this paper, we propose a system called RainfalLTE that utilizes the downlink signal of LTE base stations for device-independent rain sensing. In articular, it is fully compatible with current communication modes and does not require any additional hardware. We evaluate it with LTE data and rainfall information provided by a weather radar in Badaling Town, Beijing The results show that for 10 classes of rainfall, RainfalLTE achieves over 97% identification accuracy. Our case study shows that the assistance of rainfall information can bring more than 40% energy saving, which provides new opportunities for the design and optimization of ISAC systems.
Abstract:This study introduces a cutting-edge regional weather forecasting model based on the SwinTransformer 3D architecture. This model is specifically designed to deliver precise hourly weather predictions ranging from 1 hour to 5 days, significantly improving the reliability and practicality of short-term weather forecasts. Our model has demonstrated generally superior performance when compared to Pangu, a well-established global model. The evaluation indicates that our model excels in predicting most weather variables, highlighting its potential as a more effective alternative in the field of limited area modeling. A noteworthy feature of this model is the integration of enhanced boundary conditions, inspired by traditional numerical weather prediction (NWP) techniques. This integration has substantially improved the model's predictive accuracy. Additionally, the model includes an innovative approach for diagnosing hourly total precipitation at a high spatial resolution of approximately 5 kilometers. This is achieved through a latent diffusion model, offering an alternative method for generating high-resolution precipitation data.
Abstract:High-resolution precipitation forecasts are crucial for providing accurate weather prediction and supporting effective responses to extreme weather events. Traditional numerical models struggle with stochastic subgrid-scale processes, while recent deep learning models often produce blurry results. To address these challenges, we propose a physics-inspired deep learning framework for high-resolution (0.05\textdegree{} $\times$ 0.05\textdegree{}) ensemble precipitation forecasting. Trained on ERA5 and CMPA high-resolution precipitation datasets, the framework integrates deterministic and probabilistic components. The deterministic model, based on a 3D SwinTransformer, captures average precipitation at mesoscale resolution and incorporates strategies to enhance performance, particularly for moderate to heavy rainfall. The probabilistic model employs conditional diffusion in latent space to account for uncertainties in residual precipitation at convective scales. During inference, ensemble members are generated by repeatedly sampling latent variables, enabling the model to represent precipitation uncertainty. Our model significantly enhances spatial resolution and forecast accuracy. Rank histogram shows that the ensemble system is reliable and unbiased. In a case study of heavy precipitation in southern China, the model outputs align more closely with observed precipitation distributions than ERA5, demonstrating superior capability in capturing extreme precipitation events. Additionally, 5-day real-time forecasts show good performance in terms of CSI scores.
Abstract:Most recent scribble-supervised segmentation methods commonly adopt a CNN framework with an encoder-decoder architecture. Despite its multiple benefits, this framework generally can only capture small-range feature dependency for the convolutional layer with the local receptive field, which makes it difficult to learn global shape information from the limited information provided by scribble annotations. To address this issue, this paper proposes a new CNN-Transformer hybrid solution for scribble-supervised medical image segmentation called ScribFormer. The proposed ScribFormer model has a triple-branch structure, i.e., the hybrid of a CNN branch, a Transformer branch, and an attention-guided class activation map (ACAM) branch. Specifically, the CNN branch collaborates with the Transformer branch to fuse the local features learned from CNN with the global representations obtained from Transformer, which can effectively overcome limitations of existing scribble-supervised segmentation methods. Furthermore, the ACAM branch assists in unifying the shallow convolution features and the deep convolution features to improve model's performance further. Extensive experiments on two public datasets and one private dataset show that our ScribFormer has superior performance over the state-of-the-art scribble-supervised segmentation methods, and achieves even better results than the fully-supervised segmentation methods. The code is released at https://github.com/HUANGLIZI/ScribFormer.