Abstract:Guided by Synesthesia of Machines (SoM), the nonlinear mapping relationship between sensory and communication information serves as a powerful tool to enhance both the accuracy and generalization of vehicle-to-vehicle (V2V) multi-modal intelligent channel modeling (MMICM) in intelligent transportation systems (ITSs). To explore the general mapping relationship between physical environment and electromagnetic space, a new intelligent sensing-communication integration dataset, named V2V-M3, is constructed for multiple scenarios in V2V communications with multiple frequency bands and multiple vehicular traffic densities (VTDs). Leveraging the strong representation and cross-modal inference capabilities of large language models (LLMs), a novel LLM-based method for Scatterer Prediction (LLM4SP) from light detection and ranging (LiDAR) point clouds is developed. To address the inherent and significant differences across multi-modal data, synergistically optimized four-module architecture, i.e., preprocessor, embedding, backbone, and output modules, are designed by considering the sensing/channel characteristics and electromagnetic propagation mechanism. On the basis of cross-modal representation alignment and positional encoding, the network of LLM4SP is fine-tuned to capture the general mapping relationship between LiDAR point clouds and scatterers. Simulation results demonstrate that the proposed LLM4SP achieves superior performance in full-sample and generalization testing, significantly outperforming small models across different frequency bands, scenarios, and VTDs.
Abstract:Given the importance of datasets for sensing-communication integration research, a novel simulation platform for constructing communication and multi-modal sensory dataset is developed. The developed platform integrates three high-precision software, i.e., AirSim, WaveFarer, and Wireless InSite, and further achieves in-depth integration and precise alignment of them. Based on the developed platform, a new synthetic intelligent multi-modal sensing-communication dataset for Synesthesia of Machines (SoM), named SynthSoM, is proposed. The SynthSoM dataset contains various air-ground multi-link cooperative scenarios with comprehensive conditions, including multiple weather conditions, times of the day, intelligent agent densities, frequency bands, and antenna types. The SynthSoM dataset encompasses multiple data modalities, including radio-frequency (RF) channel large-scale and small-scale fading data, RF millimeter wave (mmWave) radar sensory data, and non-RF sensory data, e.g., RGB images, depth maps, and light detection and ranging (LiDAR) point clouds. The quality of SynthSoM dataset is validated via statistics-based qualitative inspection and evaluation metrics through machine learning (ML) via real-world measurements. The SynthSoM dataset is open-sourced and provides consistent data for cross-comparing SoM-related algorithms.
Abstract:This paper proposes a novel sixth-generation (6G) multi-modal intelligent vehicle-to-vehicle (V2V) channel model from light detection and ranging (LiDAR) point clouds based on Synesthesia of Machines (SoM). To explore the mapping relationship between physical environment and electromagnetic space, a new V2V high-fidelity mixed sensing-communication integration simulation dataset with different vehicular traffic densities (VTDs) is constructed. Based on the constructed dataset, a novel scatterer recognition (ScaR) algorithm utilizing neural network SegNet is developed to recognize scatterer spatial attributes from LiDAR point clouds via SoM. In the developed ScaR algorithm, the mapping relationship between LiDAR point clouds and scatterers is explored, where the distribution of scatterers is obtained in the form of grid maps. Furthermore, scatterers are distinguished into dynamic and static scatterers based on LiDAR point cloud features, where parameters, e.g., distance, angle, and number, related to scatterers are determined. Through ScaR, dynamic and static scatterers change with the variation of LiDAR point clouds over time, which precisely models channel non-stationarity and consistency under different VTDs. Some important channel statistical properties, such as time-frequency correlation function (TF-CF) and Doppler power spectral density (DPSD), are obtained. Simulation results match well with ray-tracing (RT)-based results, thus demonstrating the necessity of exploring the mapping relationship and the utility of the proposed model.
Abstract:In this paper, a novel environment-embedded vehicular channel model is proposed by scatterer recognition from light detection and ranging (LiDAR) point clouds via Synesthesia of Machines (SoM). To provide a robust data foundation, a new intelligent sensing-communication integration dataset in vehicular urban scenarios is constructed. Based on the constructed dataset, the complex SoM mechanism, i.e., mapping relationship between scatterers in electromagnetic space and LiDAR point clouds in physical environment, is explored via multilayer perceptron (MLP) with electromagnetic propagation mechanism. By using LiDAR point clouds to implement scatterer recognition, channel non-stationarity and consistency are modeled in an environment-embedded manner. Using ray-tracing (RT)-based results as the ground truth, the scatterer recognition accuracy exceeds 90%. The accuracy of the proposed model is further verified by the close fit between simulation results and RT results.