Abstract:Accurate precoding in massive multiple-input multiple-output (MIMO) frequency-division duplexing (FDD) systems relies on efficient channel state information (CSI) acquisition. End-to-end learning frameworks improve performance by jointly optimizing this process, but they lack scalability and fail to generalize across different system configurations, such as varying numbers of antennas and users. To overcome this limitation, we introduce WiFo-E, a wireless foundation model designed for scalable end-to-end precoding. WiFo-E employs multi-task pretraining on a diverse set of configurations to learn transferable representations of underlying wireless principles. Central to the model is a sparse Mixture-of-Experts (MoE) Transformer architecture, which mitigates task interference and enhances training efficiency by activating specialized parameter subsets adaptively. Extensive simulations demonstrate that WiFo-E outperforms conventional per-configuration training and shows strong generalization to unseen system configurations, providing a flexible and efficient foundation for adaptive massive MIMO precoding.
Abstract:Multi-user signal demodulation is critical to wireless communications, directly impacting transmission reliability and efficiency. However, existing demodulators underperform in generic multi-user environments: classical demodulators struggle to balance accuracy and complexity, while deep learning-based methods lack adaptability under heterogeneous configurations. Although diffusion models have been introduced for demodulation, their flexibility remains limited for practical use. To address these issues, this work proposes WiFo-MUD, a universal diffusion-based foundation model for multi-user demodulation. The model aligns inter-user signal-to-noise ratio imbalance and performs conditional denoising via a customized backbone. Furthermore, a communication-aware consistency distillation method and a dynamic user-grouping strategy are devised to enhance inference. WiFo-MUD achieves state-of-the-art results on large-scale heterogeneous datasets, demonstrating efficient inference and strong generalization across varying system configurations.
Abstract:In intelligent low-altitude networks, integrating monitoring tasks into communication unmanned aerial vehicles (UAVs) can consume resources and increase handoff latency for communication links. To address this challenge, we propose a strategy that enables a "double use" of UAVs, unifying the monitoring and relay handoff functions into a single, efficient process. Our scheme, guided by an integrated sensing and communication framework, coordinates these multi-role UAVs through a proactive handoff network that fuses multi-view sensory data from aerial and ground vehicles. A lightweight vehicle inspection module and a two-stage training procedure are developed to ensure monitoring accuracy and collaborative efficiency. Simulation results demonstrate the effectiveness of this integrated approach: it reduces communication outage probability by nearly 10% at a 200 Mbps requirement without compromising monitoring performance and maintains high resilience (86% achievable rate) even in the absence of multiple UAVs, outperforming traditional ground-based handoff schemes. Our code is available at the https://github.com/Jiahui-L/UAP.




Abstract:This paper constructs a novel multi-modal sensing-communication digital-twin dataset, named SynthSoM-Twin, which is spatio-temporally consistent with the real world, for Sim2Real transfer via Synesthesia of Machines (SoM). To construct the SynthSoM-Twin dataset, we propose a new framework that can extend the quantity and missing modality of existing real-world multi-modal sensing-communication dataset. Specifically, we exploit multi-modal sensing-assisted object detection and tracking algorithms to ensure spatio-temporal consistency of static objects and dynamic objects across real world and simulation environments. The constructed scenario is imported into three high-fidelity simulators, i.e., AirSim, WaveFarer, and Sionna RT. The SynthSoM-Twin dataset contains spatio-temporally consistent data with the real world, including 66,868 snapshots of synthetic RGB images, depth maps, light detection and ranging (LiDAR) point clouds, millimeter wave (mmWave) radar point clouds, and large-scale and small-scale channel fading data. To validate the utility of SynthSoM-Twin dataset, we conduct Sim2Real transfer investigation by implementing two cross-modal downstream tasks via cross-modal generative models (CMGMs), i.e., cross-modal channel generation model and multi-modal sensing-assisted beam generation model. Based on the downstream tasks, we explore the threshold of real-world data injection that can achieve a decent trade-off between real-world data usage and models' practical performance. Experimental results show that the model training on the SynthSoM-Twin dataset achieves a decent practical performance, and the injection of real-world data further facilitates Sim2Real transferability. Based on the SynthSoM-Twin dataset, injecting less than 15% of real-world data can achieve similar and even better performance compared to that trained with all the real-world data only.
Abstract:Intelligent reflecting surfaces (IRSs) have become a vital technology for improving the spectrum and energy efficiency of forthcoming wireless networks. Nevertheless, practical implementation is obstructed by the excessive overhead associated with the frequent transmission of phase shift information (PSI) over bandwidth-constrained control lines. Current deep learning-based compression methods mitigate this problem but are constrained by elevated decoder complexity, inadequate flexibility to dynamic channels, and static compression ratios. This research presents a prompt-conditioned PSI compression system that integrates prompt learning inspired by large models into the PSI compression process to address these difficulties. A hybrid prompt technique that integrates soft prompt concatenation with feature-wise linear modulation (FiLM) facilitates adaptive encoding across diverse signal-to-noise ratios (SNRs), fading kinds, and compression ratios. Furthermore, a variable rate technique incorporates the compression ratio into the prompt embeddings through latent masking, enabling a singular model to adeptly balance reconstruction accuracy. Additionally, a lightweight depthwise convolutional gating (DWCG) decoder facilitates precise feature reconstruction with minimal complexity. Comprehensive simulations indicate that the proposed framework significantly reduces NMSE compared to traditional autoencoder baselines, while ensuring robustness across various channel circumstances and accommodating variable compression ratios within a single model. These findings underscore the framework's promise as a scalable and efficient solution for real-time IRS control in next-generation wireless networks.
Abstract:Integrated sensing and communication (ISAC) within sub-THz frequencies is crucial for future air-ground networks, but unique propagation characteristics and hardware limitations present challenges in optimizing ISAC performance while increasing operational latency. This paper introduces a multi-modal sensing fusion framework inspired by synesthesia of machine (SoM) to enhance sub-THz ISAC transmission. By exploiting inherent degrees of freedom in sub-THz hardware and channels, the framework optimizes the radio-frequency environment. Squint-aware beam management is developed to improve air-ground network adaptability, enabling three-dimensional dynamic ISAC links. Leveraging multi-modal information, the framework enhances ISAC performance and reduces latency. Visual data rapidly localizes users and targets, while a customized multi-modal learning algorithm optimizes the hybrid precoder. A new metric provides comprehensive performance evaluation, and extensive experiments demonstrate that the proposed scheme significantly improves ISAC efficiency.
Abstract:This paper investigates a heterogeneous multi-vehicle, multi-modal sensing (H-MVMM) aided online precoding problem. The proposed H-MVMM scheme utilizes a vertical federated learning (VFL) framework to minimize pilot sequence length and optimize the sum rate. This offers a promising solution for reducing latency in frequency division duplexing systems. To achieve this, three preprocessing modules are designed to transform raw sensory data into informative representations relevant to precoding. The approach effectively addresses local data heterogeneity arising from diverse on-board sensor configurations through a well-structured VFL training procedure. Additionally, a label-free online model updating strategy is introduced, enabling the H-MVMM scheme to adapt its weights flexibly. This strategy features a pseudo downlink channel state information label simulator (PCSI-Simulator), which is trained using a semi-supervised learning (SSL) approach alongside an online loss function. Numerical results show that the proposed method can closely approximate the performance of traditional optimization techniques with perfect channel state information, achieving a significant 90.6\% reduction in pilot sequence length.




Abstract:The perspective-$n$-point (P$n$P) problem is important for robotic pose estimation. It is well studied for optical cameras, but research is lacking for 2D forward-looking sonar (FLS) in underwater scenarios due to the vastly different imaging principles. In this paper, we demonstrate that, despite the nonlinearity inherent in sonar image formation, the P$n$P problem for 2D FLS can still be effectively addressed within a point-to-line (PtL) 3D registration paradigm through orthographic approximation. The registration is then resolved by a duality-based optimal solver, ensuring the global optimality. For coplanar cases, a null space analysis is conducted to retrieve the solutions from the dual formulation, enabling the methods to be applied to more general cases. Extensive simulations have been conducted to systematically evaluate the performance under different settings. Compared to non-reprojection-optimized state-of-the-art (SOTA) methods, the proposed approach achieves significantly higher precision. When both methods are optimized, ours demonstrates comparable or slightly superior precision.


Abstract:Nowadays, the convergence of Mobile Edge Computing (MEC) and vehicular networks has emerged as a vital facilitator for the ever-increasing intelligent onboard applications. This paper introduces a multi-tier task offloading mechanism for MEC-enabled vehicular networks leveraging vehicle-to-everything (V2X) communications. The study focuses on applications with sequential subtasks and explores two tiers of collaboration. In the vehicle tier, we design a needing vehicle (NV)-helping vehicle (HV) matching scheme and inter-vehicle collaborative computation is studied, with joint optimization of task offloading decision, communication, and computation resource allocation to minimize energy consumption and meet latency requirements. In the roadside unit (RSU) tier, collaboration among RSUs is investigated to address multi-access issues of bandwidth and computation resources for multiple vehicles. A two-step method is proposed to solve the subchannel allocation problem. Detailed experiments are conducted to demonstrate the effectiveness of the proposed method and assess the impact of different parameters on system energy consumption.
Abstract:Rejecting outliers before applying classical robust methods is a common approach to increase the success rate of estimation, particularly when the outlier ratio is extremely high (e.g. 90%). However, this method often relies on sensor- or task-specific characteristics, which may not be easily transferable across different scenarios. In this paper, we focus on the problem of rejecting 2D-3D point correspondence outliers from 2D forward-looking sonar (2D FLS) observations, which is one of the most popular perception device in the underwater field but has a significantly different imaging mechanism compared to widely used perspective cameras and LiDAR. We fully leverage the narrow field of view in the elevation of 2D FLS and develop two compatibility tests for different 3D point configurations: (1) In general cases, we design a pairwise length in-range test to filter out overly long or short edges formed from point sets; (2) In coplanar cases, we design a coplanarity test to check if any four correspondences are compatible under a coplanar setting. Both tests are integrated into outlier rejection pipelines, where they are followed by maximum clique searching to identify the largest consistent measurement set as inliers. Extensive simulations demonstrate that the proposed methods for general and coplanar cases perform effectively under outlier ratios of 80% and 90%, respectively.