Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Motley: Benchmarking Heterogeneity and Personalization in Federated Learning


Jun 18, 2022
Shanshan Wu, Tian Li, Zachary Charles, Yu Xiao, Ziyu Liu, Zheng Xu, Virginia Smith

* 35 pages, 9 figures, 5 tables. Code: https://github.com/google-research/federated/tree/master/personalization_benchmark 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

On Privacy and Personalization in Cross-Silo Federated Learning


Jun 16, 2022
Ziyu Liu, Shengyuan Hu, Zhiwei Steven Wu, Virginia Smith


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Adversarial Unlearning: Reducing Confidence Along Adversarial Directions


Jun 03, 2022
Amrith Setlur, Benjamin Eysenbach, Virginia Smith, Sergey Levine


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

To Federate or Not To Federate: Incentivizing Client Participation in Federated Learning


May 30, 2022
Yae Jee Cho, Divyansh Jhunjhunwala, Tian Li, Virginia Smith, Gauri Joshi


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Provably Fair Federated Learning via Bounded Group Loss


Mar 18, 2022
Shengyuan Hu, Zhiwei Steven Wu, Virginia Smith

* 14 pages 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Private Adaptive Optimization with Side Information


Feb 12, 2022
Tian Li, Manzil Zaheer, Sashank J. Reddi, Virginia Smith


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines


Nov 07, 2021
Michael Kuchnik, Ana Klimovic, Jiri Simsa, George Amvrosiadis, Virginia Smith


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

On Tilted Losses in Machine Learning: Theory and Applications


Sep 13, 2021
Tian Li, Ahmad Beirami, Maziar Sanjabi, Virginia Smith

* arXiv admin note: substantial text overlap with arXiv:2007.01162 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Private Multi-Task Learning: Formulation and Applications to Federated Learning


Aug 30, 2021
Shengyuan Hu, Zhiwei Steven Wu, Virginia Smith

* 12 pages 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

A Field Guide to Federated Optimization


Jul 14, 2021
Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan, Blaise Aguera y Arcas, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, Suhas Diggavi, Hubert Eichner, Advait Gadhikar, Zachary Garrett, Antonious M. Girgis, Filip Hanzely, Andrew Hard, Chaoyang He, Samuel Horvath, Zhouyuan Huo, Alex Ingerman, Martin Jaggi, Tara Javidi, Peter Kairouz, Satyen Kale, Sai Praneeth Karimireddy, Jakub Konecny, Sanmi Koyejo, Tian Li, Luyang Liu, Mehryar Mohri, Hang Qi, Sashank J. Reddi, Peter Richtarik, Karan Singhal, Virginia Smith, Mahdi Soltanolkotabi, Weikang Song, Ananda Theertha Suresh, Sebastian U. Stich, Ameet Talwalkar, Hongyi Wang, Blake Woodworth, Shanshan Wu, Felix X. Yu, Honglin Yuan, Manzil Zaheer, Mi Zhang, Tong Zhang, Chunxiang Zheng, Chen Zhu, Wennan Zhu


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
3
4
>>