Abstract:In this paper, we focus on a long-term continual learning (CL) task, where a model learns sequentially from a stream of vast tasks over time, acquiring new knowledge while retaining previously learned information in a manner akin to human learning. Unlike traditional CL settings, long-term CL involves handling a significantly larger number of tasks, which exacerbates the issue of catastrophic forgetting. Our work seeks to address two critical questions: 1) How do existing CL methods perform in the context of long-term CL? and 2) How can we mitigate the catastrophic forgetting that arises from prolonged sequential updates? To tackle these challenges, we propose a novel framework inspired by human memory mechanisms for long-term continual learning (Long-CL). Specifically, we introduce a task-core memory management strategy to efficiently index crucial memories and adaptively update them as learning progresses. Additionally, we develop a long-term memory consolidation mechanism that selectively retains hard and discriminative samples, ensuring robust knowledge retention. To facilitate research in this area, we construct and release two multi-modal and textual benchmarks, MMLongCL-Bench and TextLongCL-Bench, providing a valuable resource for evaluating long-term CL approaches. Experimental results show that Long-CL outperforms the previous state-of-the-art by 7.4\% and 6.5\% AP on the two benchmarks, respectively, demonstrating the effectiveness of our approach.
Abstract:Recently, foundation language models (LMs) have marked significant achievements in the domains of natural language processing (NLP) and computer vision (CV). Unlike traditional neural network models, foundation LMs obtain a great ability for transfer learning by acquiring rich commonsense knowledge through pre-training on extensive unsupervised datasets with a vast number of parameters. However, they still can not emulate human-like continuous learning due to catastrophic forgetting. Consequently, various continual learning (CL)-based methodologies have been developed to refine LMs, enabling them to adapt to new tasks without forgetting previous knowledge. However, a systematic taxonomy of existing approaches and a comparison of their performance are still lacking, which is the gap that our survey aims to fill. We delve into a comprehensive review, summarization, and classification of the existing literature on CL-based approaches applied to foundation language models, such as pre-trained language models (PLMs), large language models (LLMs) and vision-language models (VLMs). We divide these studies into offline CL and online CL, which consist of traditional methods, parameter-efficient-based methods, instruction tuning-based methods and continual pre-training methods. Offline CL encompasses domain-incremental learning, task-incremental learning, and class-incremental learning, while online CL is subdivided into hard task boundary and blurry task boundary settings. Additionally, we outline the typical datasets and metrics employed in CL research and provide a detailed analysis of the challenges and future work for LMs-based continual learning.