Abstract:Deep learning on the point cloud is increasingly developing. Grouping the point with its neighbors and conducting convolution-like operation on them can learn the local feature of the point cloud, but this method is weak to extract the long-distance global feature. Performing the attention-based transformer on the whole point cloud can effectively learn the global feature of it, but this method is hardly to extract the local detailed feature. In this paper, we propose a novel module that can simultaneously extract and fuse local and global features, which is named as CT-block. The CT-block is composed of two branches, where the letter C represents the convolution-branch and the letter T represents the transformer-branch. The convolution-branch performs convolution on the grouped neighbor points to extract the local feature. Meanwhile, the transformer-branch performs offset-attention process on the whole point cloud to extract the global feature. Through the bridge constructed by the feature transmission element in the CT-block, the local and global features guide each other during learning and are fused effectively. We apply the CT-block to construct point cloud classification and segmentation networks, and evaluate the performance of them by several public datasets. The experimental results show that, because the features learned by CT-block are much expressive, the performance of the networks constructed by the CT-block on the point cloud classification and segmentation tasks achieve state of the art.
Abstract:Backdoor attacks pose a new threat to NLP models. A standard strategy to construct poisoned data in backdoor attacks is to insert triggers (e.g., rare words) into selected sentences and alter the original label to a target label. This strategy comes with a severe flaw of being easily detected from both the trigger and the label perspectives: the trigger injected, which is usually a rare word, leads to an abnormal natural language expression, and thus can be easily detected by a defense model; the changed target label leads the example to be mistakenly labeled and thus can be easily detected by manual inspections. To deal with this issue, in this paper, we propose a new strategy to perform textual backdoor attacks which do not require an external trigger, and the poisoned samples are correctly labeled. The core idea of the proposed strategy is to construct clean-labeled examples, whose labels are correct but can lead to test label changes when fused with the training set. To generate poisoned clean-labeled examples, we propose a sentence generation model based on the genetic algorithm to cater to the non-differentiable characteristic of text data. Extensive experiments demonstrate that the proposed attacking strategy is not only effective, but more importantly, hard to defend due to its triggerless and clean-labeled nature. Our work marks the first step towards developing triggerless attacking strategies in NLP.
Abstract:Pre-trained Natural Language Processing (NLP) models can be easily adapted to a variety of downstream language tasks. This significantly accelerates the development of language models. However, NLP models have been shown to be vulnerable to backdoor attacks, where a pre-defined trigger word in the input text causes model misprediction. Previous NLP backdoor attacks mainly focus on some specific tasks. This makes those attacks less general and applicable to other kinds of NLP models and tasks. In this work, we propose \Name, the first task-agnostic backdoor attack against the pre-trained NLP models. The key feature of our attack is that the adversary does not need prior information about the downstream tasks when implanting the backdoor to the pre-trained model. When this malicious model is released, any downstream models transferred from it will also inherit the backdoor, even after the extensive transfer learning process. We further design a simple yet effective strategy to bypass a state-of-the-art defense. Experimental results indicate that our approach can compromise a wide range of downstream NLP tasks in an effective and stealthy way.
Abstract:Adversarial attacks have threatened the application of deep neural networks in security-sensitive scenarios. Most existing black-box attacks fool the target model by interacting with it many times and producing global perturbations. However, global perturbations change the smooth and insignificant background, which not only makes the perturbation more easily be perceived but also increases the query overhead. In this paper, we propose a novel framework to perturb the discriminative areas of clean examples only within limited queries in black-box attacks. Our framework is constructed based on two types of transferability. The first one is the transferability of model interpretations. Based on this property, we identify the discriminative areas of a given clean example easily for local perturbations. The second is the transferability of adversarial examples. It helps us to produce a local pre-perturbation for improving query efficiency. After identifying the discriminative areas and pre-perturbing, we generate the final adversarial examples from the pre-perturbed example by querying the targeted model with two kinds of black-box attack techniques, i.e., gradient estimation and random search. We conduct extensive experiments to show that our framework can significantly improve the query efficiency during black-box perturbing with a high attack success rate. Experimental results show that our attacks outperform state-of-the-art black-box attacks under various system settings.
Abstract:Public resources and services (e.g., datasets, training platforms, pre-trained models) have been widely adopted to ease the development of Deep Learning-based applications. However, if the third-party providers are untrusted, they can inject poisoned samples into the datasets or embed backdoors in those models. Such an integrity breach can cause severe consequences, especially in safety- and security-critical applications. Various backdoor attack techniques have been proposed for higher effectiveness and stealthiness. Unfortunately, existing defense solutions are not practical to thwart those attacks in a comprehensive way. In this paper, we investigate the effectiveness of data augmentation techniques in mitigating backdoor attacks and enhancing DL models' robustness. An evaluation framework is introduced to achieve this goal. Specifically, we consider a unified defense solution, which (1) adopts a data augmentation policy to fine-tune the infected model and eliminate the effects of the embedded backdoor; (2) uses another augmentation policy to preprocess input samples and invalidate the triggers during inference. We propose a systematic approach to discover the optimal policies for defending against different backdoor attacks by comprehensively evaluating 71 state-of-the-art data augmentation functions. Extensive experiments show that our identified policy can effectively mitigate eight different kinds of backdoor attacks and outperform five existing defense methods. We envision this framework can be a good benchmark tool to advance future DNN backdoor studies.
Abstract:Collaborative learning has gained great popularity due to its benefit of data privacy protection: participants can jointly train a Deep Learning model without sharing their training sets. However, recent works discovered that an adversary can fully recover the sensitive training samples from the shared gradients. Such reconstruction attacks pose severe threats to collaborative learning. Hence, effective mitigation solutions are urgently desired. In this paper, we propose to leverage data augmentation to defeat reconstruction attacks: by preprocessing sensitive images with carefully-selected transformation policies, it becomes infeasible for the adversary to extract any useful information from the corresponding gradients. We design a novel search method to automatically discover qualified policies. We adopt two new metrics to quantify the impacts of transformations on data privacy and model usability, which can significantly accelerate the search speed. Comprehensive evaluations demonstrate that the policies discovered by our method can defeat existing reconstruction attacks in collaborative learning, with high efficiency and negligible impact on the model performance.
Abstract:Watermarking has shown its effectiveness in protecting the intellectual property of Deep Neural Networks (DNNs). Existing techniques usually embed a set of carefully-crafted sample-label pairs into the target model during the training process. Then ownership verification is performed by querying a suspicious model with those watermark samples and checking the prediction results. These watermarking solutions claim to be robustness against model transformations, which is challenged by this paper. We design a novel watermark removal attack, which can defeat state-of-the-art solutions without any prior knowledge of the adopted watermarking technique and training samples. We make two contributions in the design of this attack. First, we propose a novel preprocessing function, which embeds imperceptible patterns and performs spatial-level transformations over the input. This function can make the watermark sample unrecognizable by the watermarked model, while still maintaining the correct prediction results of normal samples. Second, we introduce a fine-tuning strategy using unlabelled and out-of-distribution samples, which can improve the model usability in an efficient manner. Extensive experimental results indicate that our proposed attack can effectively bypass existing watermarking solutions with very high success rates.
Abstract:Decentralized learning has received great attention for its high efficiency and performance. In such systems, every participant constantly exchanges parameters with each other to train a shared model, which can put him at the risk of data privacy leakage. Differential Privacy (DP) has been adopted to enhance the Stochastic Gradient Descent (SGD) algorithm. However, these approaches mainly focus on single-party learning, or centralized learning in the synchronous mode. In this paper, we design a novel DP-SGD algorithm for decentralized learning systems. The key contribution of our solution is a \emph{topology-aware} optimization strategy, which leverages the unique network characteristics of decentralized systems to effectively reduce the noise scale and improve the model usability. Besides, we design a novel learning protocol for both synchronous and asynchronous decentralized systems by restricting the sensitivity of the SGD algorithm and maximizing the noise reduction. We formally analyze and prove the DP requirement of our proposed algorithms. Experimental evaluations demonstrate that our algorithm achieves a better trade-off between usability and privacy than prior works.
Abstract:With the proliferation of IoT and edge computing, decentralized learning is becoming more promising. When designing a distributed learning system, one major challenge to consider is Byzantine Fault Tolerance (BFT). Past works have researched Byzantine-resilient solutions for centralized distributed learning. However, there are currently no satisfactory solutions with strong efficiency and security in decentralized systems. In this paper, we propose a novel algorithm, Mozi, to achieve BFT in decentralized learning systems. Specifically, Mozi provides a uniform Byzantine-resilient aggregation rule for benign nodes to select the useful parameter updates and filter out the malicious ones in each training iteration. It guarantees that each benign node in a decentralized system can train a correct model under very strong Byzantine attacks with an arbitrary number of faulty nodes. We perform the theoretical analysis to prove the uniform convergence of our proposed algorithm. Experimental evaluations demonstrate the high security and efficiency of Mozi compared to all existing solutions.