Given BM25's enduring competitiveness as an information retrieval baseline, we investigate to what extent it can be even further improved by augmenting and re-weighting its sparse query-vector representation. We propose an approach to learning an augmentation and a re-weighting end-to-end, and we find that our approach improves performance over BM25 while retaining its speed. We furthermore find that the learned augmentations and re-weightings transfer well to unseen datasets.
We investigate the ability of transformer models to approximate the CKY algorithm, using them to directly predict a parse and thus avoid the CKY algorithm's cubic dependence on sentence length. We find that on standard constituency parsing benchmarks this approach achieves competitive or better performance than comparable parsers that make use of CKY, while being faster. We also evaluate the viability of this approach for parsing under random PCFGs. Here we find that performance declines as the grammar becomes more ambiguous, suggesting that the transformer is not fully capturing the CKY computation. However, we also find that incorporating additional inductive bias is helpful, and we propose a novel approach that makes use of gradients with respect to chart representations in predicting the parse, in analogy with the CKY algorithm being the subgradient of a partition function variant with respect to the chart.
This paper introduces the shared task of summarizing documents in several creative domains, namely literary texts, movie scripts, and television scripts. Summarizing these creative documents requires making complex literary interpretations, as well as understanding non-trivial temporal dependencies in texts containing varied styles of plot development and narrative structure. This poses unique challenges and is yet underexplored for text summarization systems. In this shared task, we introduce four sub-tasks and their corresponding datasets, focusing on summarizing books, movie scripts, primetime television scripts, and daytime soap opera scripts. We detail the process of curating these datasets for the task, as well as the metrics used for the evaluation of the submissions. As part of the CREATIVESUMM workshop at COLING 2022, the shared task attracted 18 submissions in total. We discuss the submissions and the baselines for each sub-task in this paper, along with directions for facilitating future work in the field.
Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 442 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.
While coreference resolution is defined independently of dataset domain, most models for performing coreference resolution do not transfer well to unseen domains. We consolidate a set of 8 coreference resolution datasets targeting different domains to evaluate the off-the-shelf performance of models. We then mix three datasets for training; even though their domain, annotation guidelines, and metadata differ, we propose a method for jointly training a single model on this heterogeneous data mixture by using data augmentation to account for annotation differences and sampling to balance the data quantities. We find that in a zero-shot setting, models trained on a single dataset transfer poorly while joint training yields improved overall performance, leading to better generalization in coreference resolution models. This work contributes a new benchmark for robust coreference resolution and multiple new state-of-the-art results.
We introduce SummScreen, a summarization dataset comprised of pairs of TV series transcripts and human written recaps. The dataset provides a challenging testbed for abstractive summarization for several reasons. Plot details are often expressed indirectly in character dialogues and may be scattered across the entirety of the transcript. These details must be found and integrated to form the succinct plot descriptions in the recaps. Also, TV scripts contain content that does not directly pertain to the central plot but rather serves to develop characters or provide comic relief. This information is rarely contained in recaps. Since characters are fundamental to TV series, we also propose two entity-centric evaluation metrics. Empirically, we characterize the dataset by evaluating several methods, including neural models and those based on nearest neighbors. An oracle extractive approach outperforms all benchmarked models according to automatic metrics, showing that the neural models are unable to fully exploit the input transcripts. Human evaluation and qualitative analysis reveal that our non-oracle models are competitive with their oracle counterparts in terms of generating faithful plot events and can benefit from better content selectors. Both oracle and non-oracle models generate unfaithful facts, suggesting future research directions.
Transformer language models have made tremendous strides in natural language understanding tasks. However, the complexity of natural language makes it challenging to ascertain how accurately these models are tracking the world state underlying the text. Motivated by this issue, we consider the task of language modeling for the game of chess. Unlike natural language, chess notations describe a simple, constrained, and deterministic domain. Moreover, we observe that the appropriate choice of chess notation allows for directly probing the world state, without requiring any additional probing-related machinery. We find that: (a) With enough training data, transformer language models can learn to track pieces and predict legal moves with high accuracy when trained solely on move sequences. (b) For small training sets providing access to board state information during training can yield significant improvements. (c) The success of transformer language models is dependent on access to the entire game history i.e. "full attention". Approximating this full attention results in a significant performance drop. We propose this testbed as a benchmark for future work on the development and analysis of transformer language models.
We propose to tackle conditional text generation tasks, especially those which require generating formulaic text, by splicing together segments of text from retrieved "neighbor" source-target pairs. Unlike recent work that conditions on retrieved neighbors in an encoder-decoder setting but generates text token-by-token, left-to-right, we learn a policy that directly manipulates segments of neighbor text (i.e., by inserting or replacing them) to form an output. Standard techniques for training such a policy require an oracle derivation for each generation, and we prove that finding the shortest such derivation can be reduced to parsing under a particular weighted context-free grammar. We find that policies learned in this way allow for interpretable table-to-text or headline generation that is competitive with neighbor-based token-level policies on automatic metrics, though on all but one dataset neighbor-based policies underperform a strong neighborless baseline. In all cases, however, generating by splicing is faster.