Large language models have been shown to struggle with limited context memory and multi-step reasoning. We propose a simple method for solving both of these problems by allowing the model to take Self-Notes. Unlike recent scratchpad approaches, the model can deviate from the input context at any time to explicitly think. This allows the model to recall information and perform reasoning on the fly as it reads the context, thus extending its memory and enabling multi-step reasoning. Our experiments on multiple tasks demonstrate that our method can successfully generalize to longer and more complicated instances from their training setup by taking Self-Notes at inference time.
We present an empirical study of adapting an existing pretrained text-to-text model for long-sequence inputs. Through a comprehensive study along three axes of the pretraining pipeline -- model architecture, optimization objective, and pretraining corpus, we propose an effective recipe to build long-context models from existing short-context models. Specifically, we replace the full attention in transformers with pooling-augmented blockwise attention, and pretrain the model with a masked-span prediction task with spans of varying length. In terms of the pretraining corpus, we find that using randomly concatenated short-documents from a large open-domain corpus results in better performance than using existing long document corpora which are typically limited in their domain coverage. With these findings, we build a long-context model that achieves competitive performance on long-text QA tasks and establishes the new state of the art on five long-text summarization datasets, often outperforming previous methods with larger model sizes.
What would it take for a natural language model to understand a novel, such as The Lord of the Rings? Among other things, such a model must be able to: (a) identify and record new characters (entities) and their attributes as they are introduced in the text, and (b) identify subsequent references to the characters previously introduced and update their attributes. This problem of entity tracking is essential for language understanding, and thus, useful for a wide array of downstream applications in NLP such as question-answering, summarization. In this thesis, we focus on two key problems in relation to facilitating the use of entity tracking models: (i) scaling entity tracking models to long documents, such as a novel, and (ii) integrating entity tracking into language models. Applying language technologies to long documents has garnered interest recently, but computational constraints are a significant bottleneck in scaling up current methods. In this thesis, we argue that computationally efficient entity tracking models can be developed by representing entities with rich, fixed-dimensional vector representations derived from pretrained language models, and by exploiting the ephemeral nature of entities. We also argue for the integration of entity tracking into language models as it will allow for: (i) wider application given the current ubiquitous use of pretrained language models in NLP applications, and (ii) easier adoption since it is much easier to swap in a new pretrained language model than to integrate a separate standalone entity tracking model.
Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 442 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.
While coreference resolution is defined independently of dataset domain, most models for performing coreference resolution do not transfer well to unseen domains. We consolidate a set of 8 coreference resolution datasets targeting different domains to evaluate the off-the-shelf performance of models. We then mix three datasets for training; even though their domain, annotation guidelines, and metadata differ, we propose a method for jointly training a single model on this heterogeneous data mixture by using data augmentation to account for annotation differences and sampling to balance the data quantities. We find that in a zero-shot setting, models trained on a single dataset transfer poorly while joint training yields improved overall performance, leading to better generalization in coreference resolution models. This work contributes a new benchmark for robust coreference resolution and multiple new state-of-the-art results.
Transformer language models have made tremendous strides in natural language understanding tasks. However, the complexity of natural language makes it challenging to ascertain how accurately these models are tracking the world state underlying the text. Motivated by this issue, we consider the task of language modeling for the game of chess. Unlike natural language, chess notations describe a simple, constrained, and deterministic domain. Moreover, we observe that the appropriate choice of chess notation allows for directly probing the world state, without requiring any additional probing-related machinery. We find that: (a) With enough training data, transformer language models can learn to track pieces and predict legal moves with high accuracy when trained solely on move sequences. (b) For small training sets providing access to board state information during training can yield significant improvements. (c) The success of transformer language models is dependent on access to the entire game history i.e. "full attention". Approximating this full attention results in a significant performance drop. We propose this testbed as a benchmark for future work on the development and analysis of transformer language models.
Long document coreference resolution remains a challenging task due to the large memory and runtime requirements of current models. Recent work doing incremental coreference resolution using just the global representation of entities shows practical benefits but requires keeping all entities in memory, which can be impractical for long documents. We argue that keeping all entities in memory is unnecessary, and we propose a memory-augmented neural network that tracks only a small bounded number of entities at a time, thus guaranteeing a linear runtime in length of document. We show that (a) the model remains competitive with models with high memory and computational requirements on OntoNotes and LitBank, and (b) the model learns an efficient memory management strategy easily outperforming a rule-based strategy.
Many natural language processing (NLP) tasks involve reasoning with textual spans, including question answering, entity recognition, and coreference resolution. While extensive research has focused on functional architectures for representing words and sentences, there is less work on representing arbitrary spans of text within sentences. In this paper, we conduct a comprehensive empirical evaluation of six span representation methods using eight pretrained language representation models across six tasks, including two tasks that we introduce. We find that, although some simple span representations are fairly reliable across tasks, in general the optimal span representation varies by task, and can also vary within different facets of individual tasks. We also find that the choice of span representation has a bigger impact with a fixed pretrained encoder than with a fine-tuned encoder.
We propose PeTra, a memory-augmented neural network designed to track entities in its memory slots. PeTra is trained using sparse annotation from the GAP pronoun resolution dataset and outperforms a prior memory model on the task while using a simpler architecture. We empirically compare key modeling choices, finding that we can simplify several aspects of the design of the memory module while retaining strong performance. To measure the people tracking capability of memory models, we (a) propose a new diagnostic evaluation based on counting the number of unique entities in text, and (b) conduct a small scale human evaluation to compare evidence of people tracking in the memory logs of PeTra relative to a previous approach. PeTra is highly effective in both evaluations, demonstrating its ability to track people in its memory despite being trained with limited annotation.