Alert button
Picture for Aditya Gupta

Aditya Gupta

Alert button


The Growth of E-Bike Use: A Machine Learning Approach

Jul 15, 2023
Aditya Gupta, Samarth Chitgopekar, Alexander Kim, Joseph Jiang, Megan Wang, Christopher Grattoni

We present our work on electric bicycles (e-bikes) and their implications for policymakers in the United States. E-bikes have gained significant popularity as a fast and eco-friendly transportation option. As we strive for a sustainable energy plan, understanding the growth and impact of e-bikes is crucial for policymakers. Our mathematical modeling offers insights into the value of e-bikes and their role in the future. Using an ARIMA model, a supervised machine-learning algorithm, we predicted the growth of e-bike sales in the U.S. Our model, trained on historical sales data from January 2006 to December 2022, projected sales of 1.3 million units in 2025 and 2.113 million units in 2028. To assess the factors contributing to e-bike usage, we employed a Random Forest regression model. The most significant factors influencing e-bike sales growth were disposable personal income and popularity. Furthermore, we examined the environmental and health impacts of e-bikes. Through Monte Carlo simulations, we estimated the reduction in carbon emissions due to e-bike use and the calories burned through e-biking. Our findings revealed that e-bike usage in the U.S. resulted in a reduction of 15,737.82 kilograms of CO2 emissions in 2022. Additionally, e-bike users burned approximately 716,630.727 kilocalories through their activities in the same year. Our research provides valuable insights for policymakers, emphasizing the potential of e-bikes as a sustainable transportation solution. By understanding the growth factors and quantifying the environmental and health benefits, policymakers can make informed decisions about integrating e-bikes into future energy and transportation strategies.

* 25 pages; Submitted to M3 Challenge. Honorable Mention 
Viaarxiv icon

The Value of Chess Squares

Jul 08, 2023
Aditya Gupta, Shiva Maharaj, Nicholas Polson, Vadim Sokolov

Figure 1 for The Value of Chess Squares
Figure 2 for The Value of Chess Squares
Figure 3 for The Value of Chess Squares
Figure 4 for The Value of Chess Squares

Valuing chess squares and determining the placement of pieces on the board are the main objectives of our study. With the emergence of chess AI, it has become possible to accurately assess the worth of positions in a game of chess. The conventional approach assigns fixed values to pieces $(\symking=\infty, \symqueen=9, \symrook=5, \symbishop=3, \symknight=3, \sympawn=1)$. We enhance this analysis by introducing marginal valuations for both pieces and squares. We demonstrate our method by examining the positioning of Knights and Bishops, and also provide valuable insights into the valuation of pawns. Notably, Nimzowitsch was among the pioneers in advocating for the significance of Pawn structure and valuation. Finally, we conclude by suggesting potential avenues for future research.

Viaarxiv icon

Inter Subject Emotion Recognition Using Spatio-Temporal Features From EEG Signal

May 27, 2023
Mohammad Asif, Diya Srivastava, Aditya Gupta, Uma Shanker Tiwary

Figure 1 for Inter Subject Emotion Recognition Using Spatio-Temporal Features From EEG Signal
Figure 2 for Inter Subject Emotion Recognition Using Spatio-Temporal Features From EEG Signal
Figure 3 for Inter Subject Emotion Recognition Using Spatio-Temporal Features From EEG Signal

Inter-subject or subject-independent emotion recognition has been a challenging task in affective computing. This work is about an easy-to-implement emotion recognition model that classifies emotions from EEG signals subject independently. It is based on the famous EEGNet architecture, which is used in EEG-related BCIs. We used the Dataset on Emotion using Naturalistic Stimuli (DENS) dataset. The dataset contains the Emotional Events -- the precise information of the emotion timings that participants felt. The model is a combination of regular, depthwise and separable convolution layers of CNN to classify the emotions. The model has the capacity to learn the spatial features of the EEG channels and the temporal features of the EEG signals variability with time. The model is evaluated for the valence space ratings. The model achieved an accuracy of 73.04%.

Viaarxiv icon

PRESTO: A Multilingual Dataset for Parsing Realistic Task-Oriented Dialogs

Mar 17, 2023
Rahul Goel, Waleed Ammar, Aditya Gupta, Siddharth Vashishtha, Motoki Sano, Faiz Surani, Max Chang, HyunJeong Choe, David Greene, Kyle He, Rattima Nitisaroj, Anna Trukhina, Shachi Paul, Pararth Shah, Rushin Shah, Zhou Yu

Figure 1 for PRESTO: A Multilingual Dataset for Parsing Realistic Task-Oriented Dialogs
Figure 2 for PRESTO: A Multilingual Dataset for Parsing Realistic Task-Oriented Dialogs
Figure 3 for PRESTO: A Multilingual Dataset for Parsing Realistic Task-Oriented Dialogs
Figure 4 for PRESTO: A Multilingual Dataset for Parsing Realistic Task-Oriented Dialogs

Research interest in task-oriented dialogs has increased as systems such as Google Assistant, Alexa and Siri have become ubiquitous in everyday life. However, the impact of academic research in this area has been limited by the lack of datasets that realistically capture the wide array of user pain points. To enable research on some of the more challenging aspects of parsing realistic conversations, we introduce PRESTO, a public dataset of over 550K contextual multilingual conversations between humans and virtual assistants. PRESTO contains a diverse array of challenges that occur in real-world NLU tasks such as disfluencies, code-switching, and revisions. It is the only large scale human generated conversational parsing dataset that provides structured context such as a user's contacts and lists for each example. Our mT5 model based baselines demonstrate that the conversational phenomenon present in PRESTO are challenging to model, which is further pronounced in a low-resource setup.

* PRESTO v1 Release 
Viaarxiv icon

Efficient Encoders for Streaming Sequence Tagging

Jan 23, 2023
Ayush Kaushal, Aditya Gupta, Shyam Upadhyay, Manaal Faruqui

Figure 1 for Efficient Encoders for Streaming Sequence Tagging
Figure 2 for Efficient Encoders for Streaming Sequence Tagging
Figure 3 for Efficient Encoders for Streaming Sequence Tagging
Figure 4 for Efficient Encoders for Streaming Sequence Tagging

A naive application of state-of-the-art bidirectional encoders for streaming sequence tagging would require encoding each token from scratch for each new token in an incremental streaming input (like transcribed speech). The lack of re-usability of previous computation leads to a higher number of Floating Point Operations (or FLOPs) and higher number of unnecessary label flips. Increased FLOPs consequently lead to higher wall-clock time and increased label flipping leads to poorer streaming performance. In this work, we present a Hybrid Encoder with Adaptive Restart (HEAR) that addresses these issues while maintaining the performance of bidirectional encoders over the offline (or complete) inputs while improving performance on streaming (or incomplete) inputs. HEAR has a Hybrid unidirectional-bidirectional encoder architecture to perform sequence tagging, along with an Adaptive Restart Module (ARM) to selectively guide the restart of bidirectional portion of the encoder. Across four sequence tagging tasks, HEAR offers FLOP savings in streaming settings upto 71.1% and also outperforms bidirectional encoders for streaming predictions by upto +10% streaming exact match.

* EACL 2023 
Viaarxiv icon

Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

Jun 10, 2022
Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew Dai, Andrew La, Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Cameron Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, César Ferri Ramírez, Chandan Singh, Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites, Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Ekaterina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodola, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martínez-Plumed, Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germán Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Wang, Gonzalo Jaimovitch-López, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze, Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B. Simon, James Koppel, James Zheng, James Zou, Jan Kocoń, Jana Thompson, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller, John U. Balis, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose Hernandez-Orallo, Joseph Boudeman, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi, Kory Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem Şenel, Maarten Bosma, Maarten Sap, Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco Maru, Maria Jose Ramírez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova, Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy, Michael Starritt, Michael Strube, Michał Swędrowski, Michele Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun Peng, Nathan Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramón Risco Delgado, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upadhyay, Shyamolima, Debnath, Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven T. Piantadosi, Stuart M. Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Timothy Telleen-Lawton, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, Ziyi Wu

Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 442 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.

* 27 pages, 17 figures + references and appendices, repo: 
Viaarxiv icon

Discovering Intrinsic Reward with Contrastive Random Walk

Apr 23, 2022
Zixuan Pan, Zihao Wei, Yidong Huang, Aditya Gupta

Figure 1 for Discovering Intrinsic Reward with Contrastive Random Walk
Figure 2 for Discovering Intrinsic Reward with Contrastive Random Walk
Figure 3 for Discovering Intrinsic Reward with Contrastive Random Walk
Figure 4 for Discovering Intrinsic Reward with Contrastive Random Walk

The aim of this paper is to demonstrate the efficacy of using Contrastive Random Walk as a curiosity method to achieve faster convergence to the optimal policy.Contrastive Random Walk defines the transition matrix of a random walk with the help of neural networks. It learns a meaningful state representation with a closed loop. The loss of Contrastive Random Walk serves as an intrinsic reward and is added to the environment reward. Our method works well in non-tabular sparse reward scenarios, in the sense that our method receives the highest reward within the same iterations compared to other methods. Meanwhile, Contrastive Random Walk is more robust. The performance doesn't change much with different random initialization of environments. We also find that adaptive restart and appropriate temperature are crucial to the performance of Contrastive Random Walk.

* 9 pages, 6 figures 
Viaarxiv icon

Improving Top-K Decoding for Non-Autoregressive Semantic Parsing via Intent Conditioning

Apr 14, 2022
Geunseob Oh, Rahul Goel, Chris Hidey, Shachi Paul, Aditya Gupta, Pararth Shah, Rushin Shah

Figure 1 for Improving Top-K Decoding for Non-Autoregressive Semantic Parsing via Intent Conditioning
Figure 2 for Improving Top-K Decoding for Non-Autoregressive Semantic Parsing via Intent Conditioning
Figure 3 for Improving Top-K Decoding for Non-Autoregressive Semantic Parsing via Intent Conditioning
Figure 4 for Improving Top-K Decoding for Non-Autoregressive Semantic Parsing via Intent Conditioning

Semantic parsing (SP) is a core component of modern virtual assistants like Google Assistant and Amazon Alexa. While sequence-to-sequence-based auto-regressive (AR) approaches are common for conversational semantic parsing, recent studies employ non-autoregressive (NAR) decoders and reduce inference latency while maintaining competitive parsing quality. However, a major drawback of NAR decoders is the difficulty of generating top-k (i.e., k-best) outputs with approaches such as beam search. To address this challenge, we propose a novel NAR semantic parser that introduces intent conditioning on the decoder. Inspired by the traditional intent and slot tagging parsers, we decouple the top-level intent prediction from the rest of a parse. As the top-level intent largely governs the syntax and semantics of a parse, the intent conditioning allows the model to better control beam search and improves the quality and diversity of top-k outputs. We introduce a hybrid teacher-forcing approach to avoid training and inference mismatch. We evaluate the proposed NAR on conversational SP datasets, TOP & TOPv2. Like the existing NAR models, we maintain the O(1) decoding time complexity while generating more diverse outputs and improving the top-3 exact match (EM) by 2.4 points. In comparison with AR models, our model speeds up beam search inference by 6.7 times on CPU with competitive top-k EM.

Viaarxiv icon

TableFormer: Robust Transformer Modeling for Table-Text Encoding

Mar 01, 2022
Jingfeng Yang, Aditya Gupta, Shyam Upadhyay, Luheng He, Rahul Goel, Shachi Paul

Figure 1 for TableFormer: Robust Transformer Modeling for Table-Text Encoding
Figure 2 for TableFormer: Robust Transformer Modeling for Table-Text Encoding
Figure 3 for TableFormer: Robust Transformer Modeling for Table-Text Encoding
Figure 4 for TableFormer: Robust Transformer Modeling for Table-Text Encoding

Understanding tables is an important aspect of natural language understanding. Existing models for table understanding require linearization of the table structure, where row or column order is encoded as an unwanted bias. Such spurious biases make the model vulnerable to row and column order perturbations. Additionally, prior work has not thoroughly modeled the table structures or table-text alignments, hindering the table-text understanding ability. In this work, we propose a robust and structurally aware table-text encoding architecture TableFormer, where tabular structural biases are incorporated completely through learnable attention biases. TableFormer is (1) strictly invariant to row and column orders, and, (2) could understand tables better due to its tabular inductive biases. Our evaluations showed that TableFormer outperforms strong baselines in all settings on SQA, WTQ and TabFact table reasoning datasets, and achieves state-of-the-art performance on SQA, especially when facing answer-invariant row and column order perturbations (6% improvement over the best baseline), because previous SOTA models' performance drops by 4% - 6% when facing such perturbations while TableFormer is not affected.

* ACL 2022, 10 pages 
Viaarxiv icon