Abstract:While Ferret seamlessly integrates regional understanding into the Large Language Model (LLM) to facilitate its referring and grounding capability, it poses certain limitations: constrained by the pre-trained fixed visual encoder and failed to perform well on broader tasks. In this work, we unveil Ferret-v2, a significant upgrade to Ferret, with three key designs. (1) Any resolution grounding and referring: A flexible approach that effortlessly handles higher image resolution, improving the model's ability to process and understand images in greater detail. (2) Multi-granularity visual encoding: By integrating the additional DINOv2 encoder, the model learns better and diverse underlying contexts for global and fine-grained visual information. (3) A three-stage training paradigm: Besides image-caption alignment, an additional stage is proposed for high-resolution dense alignment before the final instruction tuning. Experiments show that Ferret-v2 provides substantial improvements over Ferret and other state-of-the-art methods, thanks to its high-resolution scaling and fine-grained visual processing.
Abstract:In this work, we discuss building performant Multimodal Large Language Models (MLLMs). In particular, we study the importance of various architecture components and data choices. Through careful and comprehensive ablations of the image encoder, the vision language connector, and various pre-training data choices, we identified several crucial design lessons. For example, we demonstrate that for large-scale multimodal pre-training using a careful mix of image-caption, interleaved image-text, and text-only data is crucial for achieving state-of-the-art (SOTA) few-shot results across multiple benchmarks, compared to other published pre-training results. Further, we show that the image encoder together with image resolution and the image token count has substantial impact, while the vision-language connector design is of comparatively negligible importance. By scaling up the presented recipe, we build MM1, a family of multimodal models up to 30B parameters, including both dense models and mixture-of-experts (MoE) variants, that are SOTA in pre-training metrics and achieve competitive performance after supervised fine-tuning on a range of established multimodal benchmarks. Thanks to large-scale pre-training, MM1 enjoys appealing properties such as enhanced in-context learning, and multi-image reasoning, enabling few-shot chain-of-thought prompting.
Abstract:Parallel corpora are ideal for extracting a multilingual named entity (MNE) resource, i.e., a dataset of names translated into multiple languages. Prior work on extracting MNE datasets from parallel corpora required resources such as large monolingual corpora or word aligners that are unavailable or perform poorly for underresourced languages. We present CLC-BN, a new method for creating an MNE resource, and apply it to the Parallel Bible Corpus, a corpus of more than 1000 languages. CLC-BN learns a neural transliteration model from parallel-corpus statistics, without requiring any other bilingual resources, word aligners, or seed data. Experimental results show that CLC-BN clearly outperforms prior work. We release an MNE resource for 1340 languages and demonstrate its effectiveness in two downstream tasks: knowledge graph augmentation and bilingual lexicon induction.
Abstract:In previous work, it has been shown that BERT can adequately align cross-lingual sentences on the word level. Here we investigate whether BERT can also operate as a char-level aligner. The languages examined are English, Fake-English, German and Greek. We show that the closer two languages are, the better BERT can align them on the character level. BERT indeed works well in English to Fake-English alignment, but this does not generalize to natural languages to the same extent. Nevertheless, the proximity of two languages does seem to be a factor. English is more related to German than to Greek and this is reflected in how well BERT aligns them; English to German is better than English to Greek. We examine multiple setups and show that the similarity matrices for natural languages show weaker relations the further apart two languages are.
Abstract:Multilingual pretrained language models (MPLMs) exhibit multilinguality and are well suited for transfer across languages. Most MPLMs are trained in an unsupervised fashion and the relationship between their objective and multilinguality is unclear. More specifically, the question whether MPLM representations are language-agnostic or they simply interleave well with learned task prediction heads arises. In this work, we locate language-specific information in MPLMs and identify its dimensionality and the layers where this information occurs. We show that language-specific information is scattered across many dimensions, which can be projected into a linear subspace. Our study contributes to a better understanding of MPLM representations, going beyond treating them as unanalyzable blobs of information.
Abstract:With the advent of end-to-end deep learning approaches in machine translation, interest in word alignments initially decreased; however, they have again become a focus of research more recently. Alignments are useful for typological research, transferring formatting like markup to translated texts, and can be used in the decoding of machine translation systems. At the same time, massively multilingual processing is becoming an important NLP scenario, and pretrained language and machine translation models that are truly multilingual are proposed. However, most alignment algorithms rely on bitexts only and do not leverage the fact that many parallel corpora are multiparallel. In this work, we exploit the multiparallelity of corpora by representing an initial set of bilingual alignments as a graph and then predicting additional edges in the graph. We present two graph algorithms for edge prediction: one inspired by recommender systems and one based on network link prediction. Our experimental results show absolute improvements in $F_1$ of up to 28% over the baseline bilingual word aligner in different datasets.
Abstract:The size of the vocabulary is a central design choice in large pretrained language models, with respect to both performance and memory requirements. Typically, subword tokenization algorithms such as byte pair encoding and WordPiece are used. In this work, we investigate the compatibility of tokenizations for multilingual static and contextualized embedding spaces and propose a measure that reflects the compatibility of tokenizations across languages. Our goal is to prevent incompatible tokenizations, e.g., "wine" (word-level) in English vs.\ "v i n" (character-level) in French, which make it hard to learn good multilingual semantic representations. We show that our compatibility measure allows the system designer to create vocabularies across languages that are compatible -- a desideratum that so far has been neglected in multilingual models.
Abstract:With more than 7000 languages worldwide, multilingual natural language processing (NLP) is essential both from an academic and commercial perspective. Researching typological properties of languages is fundamental for progress in multilingual NLP. Examples include assessing language similarity for effective transfer learning, injecting inductive biases into machine learning models or creating resources such as dictionaries and inflection tables. We provide ParCourE, an online tool that allows to browse a word-aligned parallel corpus, covering 1334 languages. We give evidence that this is useful for typological research. ParCourE can be set up for any parallel corpus and can thus be used for typological research on other corpora as well as for exploring their quality and properties.
Abstract:Recent research investigates factual knowledge stored in large pretrained language models (PLMs). Instead of structural knowledge base (KB) queries, masked sentences such as "Paris is the capital of [MASK]" are used as probes. The good performance on this analysis task has been interpreted as PLMs becoming potential repositories of factual knowledge. In experiments across ten linguistically diverse languages, we study knowledge contained in static embeddings. We show that, when restricting the output space to a candidate set, simple nearest neighbor matching using static embeddings performs better than PLMs. E.g., static embeddings perform 1.6% points better than BERT while just using 0.3% of energy for training. One important factor in their good comparative performance is that static embeddings are standardly learned for a large vocabulary. In contrast, BERT exploits its more sophisticated, but expensive ability to compose meaningful representations from a much smaller subword vocabulary.
Abstract:Transformers are arguably the main workhorse in recent Natural Language Processing research. By definition a Transformer is invariant with respect to reorderings of the input. However, language is inherently sequential and word order is essential to the semantics and syntax of an utterance. In this paper, we provide an overview of common methods to incorporate position information into Transformer models. The objectives of this survey are to i) showcase that position information in Transformer is a vibrant and extensive research area; ii) enable the reader to compare existing methods by providing a unified notation and meaningful clustering; iii) indicate what characteristics of an application should be taken into account when selecting a position encoding; iv) provide stimuli for future research.