Columbia University
Abstract:Large Language Models (LLMs) have achieved impressive performance in text summarization and are increasingly deployed in real-world applications. However, these systems often inherit associative and framing biases from pre-training data, leading to inappropriate or unfair outputs in downstream tasks. In this work, we present AdvSumm (Adversarial Summarization), a domain-agnostic training framework designed to mitigate bias in text summarization through improved generalization. Inspired by adversarial robustness, AdvSumm introduces a novel Perturber component that applies gradient-guided perturbations at the embedding level of Sequence-to-Sequence models, enhancing the model's robustness to input variations. We empirically demonstrate that AdvSumm effectively reduces different types of bias in summarization-specifically, name-nationality bias and political framing bias-without compromising summarization quality. Compared to standard transformers and data augmentation techniques like back-translation, AdvSumm achieves stronger bias mitigation performance across benchmark datasets.
Abstract:LLMs can be unpredictable, as even slight alterations to the prompt can cause the output to change in unexpected ways. Thus, the ability of models to accurately explain their behavior is critical, especially in high-stakes settings. One approach for evaluating explanations is counterfactual simulatability, how well an explanation allows users to infer the model's output on related counterfactuals. Counterfactual simulatability has been previously studied for yes/no question answering tasks. We provide a general framework for extending this method to generation tasks, using news summarization and medical suggestion as example use cases. We find that while LLM explanations do enable users to better predict LLM outputs on counterfactuals in the summarization setting, there is significant room for improvement for medical suggestion. Furthermore, our results suggest that the evaluation for counterfactual simulatability may be more appropriate for skill-based tasks as opposed to knowledge-based tasks.
Abstract:Recent progress in large language models (LLMs) has enabled substantial advances in solving mathematical problems. However, existing benchmarks often fail to reflect the complexity of real-world problems, which demand open-ended, interdisciplinary reasoning and integration of computational tools. To address this gap, we introduce ModelingBench, a novel benchmark featuring real-world-inspired, open-ended problems from math modeling competitions across diverse domains, ranging from urban traffic optimization to ecosystem resource planning. These tasks require translating natural language into formal mathematical formulations, applying appropriate tools, and producing structured, defensible reports. ModelingBench also supports multiple valid solutions, capturing the ambiguity and creativity of practical modeling. We also present ModelingAgent, a multi-agent framework that coordinates tool use, supports structured workflows, and enables iterative self-refinement to generate well-grounded, creative solutions. To evaluate outputs, we further propose ModelingJudge, an expert-in-the-loop system leveraging LLMs as domain-specialized judges assessing solutions from multiple expert perspectives. Empirical results show that ModelingAgent substantially outperforms strong baselines and often produces solutions indistinguishable from those of human experts. Together, our work provides a comprehensive framework for evaluating and advancing real-world problem-solving in open-ended, interdisciplinary modeling challenges.
Abstract:Reinforcement learning from expert demonstrations has long remained a challenging research problem, and existing state-of-the-art methods using behavioral cloning plus further RL training often suffer from poor generalization, low sample efficiency, and poor model interpretability. Inspired by the strong reasoning abilities of large language models (LLMs), we propose a novel strategy-based reinforcement learning framework integrated with LLMs called DYnamic STrategy Induction with Llms for reinforcement learning (DYSTIL) to overcome these limitations. DYSTIL dynamically queries a strategy-generating LLM to induce textual strategies based on advantage estimations and expert demonstrations, and gradually internalizes induced strategies into the RL agent through policy optimization to improve its performance through boosting policy generalization and enhancing sample efficiency. It also provides a direct textual channel to observe and interpret the evolution of the policy's underlying strategies during training. We test DYSTIL over challenging RL environments from Minigrid and BabyAI, and empirically demonstrate that DYSTIL significantly outperforms state-of-the-art baseline methods by 17.75% in average success rate while also enjoying higher sample efficiency during the learning process.
Abstract:Forecasting communication derailment can be useful in real-world settings such as online content moderation, conflict resolution, and business negotiations. However, despite language models' success at identifying offensive speech present in conversations, they struggle to forecast future communication derailments. In contrast to prior work that predicts conversation outcomes solely based on the past conversation history, our approach samples multiple future conversation trajectories conditioned on existing conversation history using a fine-tuned LLM. It predicts the communication outcome based on the consensus of these trajectories. We also experimented with leveraging socio-linguistic attributes, which reflect turn-level conversation dynamics, as guidance when generating future conversations. Our method of future conversation trajectories surpasses state-of-the-art results on English communication derailment prediction benchmarks and demonstrates significant accuracy gains in ablation studies.
Abstract:Determining faithfulness of a claim to a source document is an important problem across many domains. This task is generally treated as a binary judgment of whether the claim is supported or unsupported in relation to the source. In many cases, though, whether a claim is supported can be ambiguous. For instance, it may depend on making inferences from given evidence, and different people can reasonably interpret the claim as either supported or unsupported based on their agreement with those inferences. Forcing binary labels upon such claims lowers the reliability of evaluation. In this work, we reframe the task to manage the subjectivity involved with factuality judgments of ambiguous claims. We introduce LLM-generated edits of summaries as a method of providing a nuanced evaluation of claims: how much does a summary need to be edited to be unambiguous? Whether a claim gets rewritten and how much it changes can be used as an automatic evaluation metric, the Ambiguity Rewrite Metric (ARM), with a much richer feedback signal than a binary judgment of faithfulness. We focus on the area of narrative summarization as it is particularly rife with ambiguity and subjective interpretation. We show that ARM produces a 21% absolute improvement in annotator agreement on claim faithfulness, indicating that subjectivity is reduced.
Abstract:With a combination of quantitative experiments, human judgments, and qualitative analyses, we evaluate the quantity and quality of African American Language (AAL) representation in 12 predominantly English, open-source pretraining corpora. We specifically focus on the sources, variation, and naturalness of included AAL texts representing the AAL-speaking community. We find that AAL is underrepresented in all evaluated pretraining corpora compared to US demographics, constituting as little as 0.007% of documents. We also find that more than 25% of AAL texts in C4 may be inappropriate for LLMs to generate and reinforce harmful stereotypes. Finally, we find that most automated language, toxicity, and quality filters are more likely to conserve White Mainstream English (WME) texts over AAL in pretraining corpora.
Abstract:We propose a new approach for the authorship attribution task that leverages the various linguistic representations learned at different layers of pre-trained transformer-based models. We evaluate our approach on three datasets, comparing it to a state-of-the-art baseline in in-domain and out-of-domain scenarios. We found that utilizing various transformer layers improves the robustness of authorship attribution models when tested on out-of-domain data, resulting in new state-of-the-art results. Our analysis gives further insights into how our model's different layers get specialized in representing certain stylistic features that benefit the model when tested out of the domain.
Abstract:Hallucination is a persistent challenge in large language models (LLMs), where even with rigorous quality control, models often generate distorted facts. This paradox, in which error generation continues despite high-quality training data, calls for a deeper understanding of the underlying LLM mechanisms. To address it, we propose a novel concept: knowledge overshadowing, where model's dominant knowledge can obscure less prominent knowledge during text generation, causing the model to fabricate inaccurate details. Building on this idea, we introduce a novel framework to quantify factual hallucinations by modeling knowledge overshadowing. Central to our approach is the log-linear law, which predicts that the rate of factual hallucination increases linearly with the logarithmic scale of (1) Knowledge Popularity, (2) Knowledge Length, and (3) Model Size. The law provides a means to preemptively quantify hallucinations, offering foresight into their occurrence even before model training or inference. Built on overshadowing effect, we propose a new decoding strategy CoDa, to mitigate hallucinations, which notably enhance model factuality on Overshadow (27.9%), MemoTrap (13.1%) and NQ-Swap (18.3%). Our findings not only deepen understandings of the underlying mechanisms behind hallucinations but also provide actionable insights for developing more predictable and controllable language models.
Abstract:Diffusion models produce impressive results in modalities ranging from images and video to protein design and text. However, generating samples with user-specified properties remains a challenge. Recent research proposes fine-tuning models to maximize rewards that capture desired properties, but these methods require expensive training and are prone to mode collapse. In this work, we propose Feynman Kac (FK) steering, an inference-time framework for steering diffusion models with reward functions. FK steering works by sampling a system of multiple interacting diffusion processes, called particles, and resampling particles at intermediate steps based on scores computed using functions called potentials. Potentials are defined using rewards for intermediate states and are selected such that a high value indicates that the particle will yield a high-reward sample. We explore various choices of potentials, intermediate rewards, and samplers. We evaluate FK steering on text-to-image and text diffusion models. For steering text-to-image models with a human preference reward, we find that FK steering a 0.8B parameter model outperforms a 2.6B parameter fine-tuned model on prompt fidelity, with faster sampling and no training. For steering text diffusion models with rewards for text quality and specific text attributes, we find that FK steering generates lower perplexity, more linguistically acceptable outputs and enables gradient-free control of attributes like toxicity. Our results demonstrate that inference-time scaling and steering of diffusion models, even with off-the-shelf rewards, can provide significant sample quality gains and controllability benefits. Code is available at https://github.com/zacharyhorvitz/Fk-Diffusion-Steering .