Abstract:Model merging efficiently aggregates capabilities from multiple fine-tuned models into a single one, operating purely in parameter space without original data or expensive re-computation. Despite empirical successes, a unified theory for its effectiveness under heterogeneous finetuning hyperparameters (e.g., varying learning rates, batch sizes) remains missing. Moreover, the lack of hyperparameter transparency in open-source fine-tuned models makes it difficult to predict merged-model performance, leaving practitioners without guidance on how to fine-tune merge-friendly experts. To address those two challenges, we employ $L_2$-Stability theory under heterogeneous hyperparameter environments to analyze the generalization of the merged model $\boldsymbol{x}_{avg}$. This pioneering analysis yields two key contributions: (i) \textit{A unified theoretical framework} is provided to explain existing merging algorithms, revealing how they optimize specific terms in our bound, thus offering a strong theoretical foundation for empirical observations. (ii) \textit{Actionable recommendations} are proposed for practitioners to strategically fine-tune expert models, enabling the construction of merge-friendly models within the pretraining-to-finetuning pipeline. Extensive experiments on the ResNet/Vit family across 20/8 visual classification tasks, involving thousands of finetuning models, robustly confirm the impact of different hyperparameters on the generalization of $\boldsymbol{x}_{avg}$ predicted by our theoretical results.
Abstract:Cross-view spatial reasoning is essential for embodied AI, underpinning spatial understanding, mental simulation and planning in complex environments. Existing benchmarks primarily emphasize indoor or street settings, overlooking the unique challenges of open-ended urban spaces characterized by rich semantics, complex geometries, and view variations. To address this, we introduce CityCube, a systematic benchmark designed to probe cross-view reasoning capabilities of current VLMs in urban settings. CityCube integrates four viewpoint dynamics to mimic camera movements and spans a wide spectrum of perspectives from multiple platforms, e.g., vehicles, drones and satellites. For a comprehensive assessment, it features 5,022 meticulously annotated multi-view QA pairs categorized into five cognitive dimensions and three spatial relation expressions. A comprehensive evaluation of 33 VLMs reveals a significant performance disparity with humans: even large-scale models struggle to exceed 54.1% accuracy, remaining 34.2% below human performance. By contrast, small-scale fine-tuned VLMs achieve over 60.0% accuracy, highlighting the necessity of our benchmark. Further analyses indicate the task correlations and fundamental cognitive disparity between VLMs and human-like reasoning.
Abstract:Decentralized training removes the centralized server, making it a communication-efficient approach that can significantly improve training efficiency, but it often suffers from degraded performance compared to centralized training. Multi-Gossip Steps (MGS) serve as a simple yet effective bridge between decentralized and centralized training, significantly reducing experiment performance gaps. However, the theoretical reasons for its effectiveness and whether this gap can be fully eliminated by MGS remain open questions. In this paper, we derive upper bounds on the generalization error and excess error of MGS using stability analysis, systematically answering these two key questions. 1). Optimization Error Reduction: MGS reduces the optimization error bound at an exponential rate, thereby exponentially tightening the generalization error bound and enabling convergence to better solutions. 2). Gap to Centralization: Even as MGS approaches infinity, a non-negligible gap in generalization error remains compared to centralized mini-batch SGD ($\mathcal{O}(T^{\frac{c\beta}{c\beta +1}}/{n m})$ in centralized and $\mathcal{O}(T^{\frac{2c\beta}{2c\beta +2}}/{n m^{\frac{1}{2c\beta +2}}})$ in decentralized). Furthermore, we provide the first unified analysis of how factors like learning rate, data heterogeneity, node count, per-node sample size, and communication topology impact the generalization of MGS under non-convex settings without the bounded gradients assumption, filling a critical theoretical gap in decentralized training. Finally, promising experiments on CIFAR datasets support our theoretical findings.




Abstract:Nonlinear Combinatorial Optimization Problems (NCOPs) present a formidable computational hurdle in practice, as their nonconvex nature gives rise to multi-modal solution spaces that defy efficient optimization. Traditional constraint relaxation approaches rely heavily on expert-driven, iterative design processes that lack systematic automation and scalable adaptability. While recent Large Language Model (LLM)-based optimization methods show promise for autonomous problem-solving, they predominantly function as passive constraint validators rather than proactive strategy architects, failing to handle the sophisticated constraint interactions inherent to NCOPs.To address these limitations, we introduce the first end-to-end \textbf{Auto}mated \textbf{C}onstraint \textbf{O}ptimization (AutoCO) method, which revolutionizes NCOPs resolution through learning to relax with LLMs.Specifically, we leverage structured LLM reasoning to generate constraint relaxation strategies, which are dynamically evolving with algorithmic principles and executable code through a unified triple-representation scheme. We further establish a novel bidirectional (global-local) coevolution mechanism that synergistically integrates Evolutionary Algorithms for intensive local refinement with Monte Carlo Tree Search for systematic global strategy space exploration, ensuring optimal balance between intensification and diversification in fragmented solution spaces. Finally, comprehensive experiments on three challenging NCOP benchmarks validate AutoCO's consistent effectiveness and superior performance over the baselines.
Abstract:During sudden disaster events, accurately predicting public panic sentiment on social media is crucial for proactive governance and crisis management. Current efforts on this problem face three main challenges: lack of finely annotated data hinders emotion prediction studies, unmodeled risk perception causes prediction inaccuracies, and insufficient interpretability of panic formation mechanisms. We address these issues by proposing a Psychology-driven generative Agent framework (PsychoAgent) for explainable panic prediction based on emotion arousal theory. Specifically, we first construct a fine-grained open panic emotion dataset (namely COPE) via human-large language models (LLMs) collaboration to mitigate semantic bias. Then, we develop a framework integrating cross-domain heterogeneous data grounded in psychological mechanisms to model risk perception and cognitive differences in emotion generation. To enhance interpretability, we design an LLM-based role-playing agent that simulates individual psychological chains through dedicatedly designed prompts. Experimental results on our annotated dataset show that PsychoAgent improves panic emotion prediction performance by 12.6% to 21.7% compared to baseline models. Furthermore, the explainability and generalization of our approach is validated. Crucially, this represents a paradigm shift from opaque "data-driven fitting" to transparent "role-based simulation with mechanistic interpretation" for panic emotion prediction during emergencies. Our implementation is publicly available at: https://anonymous.4open.science/r/PsychoAgent-19DD.
Abstract:Aerial Visual Object Search (AVOS) tasks in urban environments require Unmanned Aerial Vehicles (UAVs) to autonomously search for and identify target objects using visual and textual cues without external guidance. Existing approaches struggle in complex urban environments due to redundant semantic processing, similar object distinction, and the exploration-exploitation dilemma. To bridge this gap and support the AVOS task, we introduce CityAVOS, the first benchmark dataset for autonomous search of common urban objects. This dataset comprises 2,420 tasks across six object categories with varying difficulty levels, enabling comprehensive evaluation of UAV agents' search capabilities. To solve the AVOS tasks, we also propose PRPSearcher (Perception-Reasoning-Planning Searcher), a novel agentic method powered by multi-modal large language models (MLLMs) that mimics human three-tier cognition. Specifically, PRPSearcher constructs three specialized maps: an object-centric dynamic semantic map enhancing spatial perception, a 3D cognitive map based on semantic attraction values for target reasoning, and a 3D uncertainty map for balanced exploration-exploitation search. Also, our approach incorporates a denoising mechanism to mitigate interference from similar objects and utilizes an Inspiration Promote Thought (IPT) prompting mechanism for adaptive action planning. Experimental results on CityAVOS demonstrate that PRPSearcher surpasses existing baselines in both success rate and search efficiency (on average: +37.69% SR, +28.96% SPL, -30.69% MSS, and -46.40% NE). While promising, the performance gap compared to humans highlights the need for better semantic reasoning and spatial exploration capabilities in AVOS tasks. This work establishes a foundation for future advances in embodied target search. Dataset and source code are available at https://anonymous.4open.science/r/CityAVOS-3DF8.
Abstract:Language-goal aerial navigation is a critical challenge in embodied AI, requiring UAVs to localize targets in complex environments such as urban blocks based on textual specification. Existing methods, often adapted from indoor navigation, struggle to scale due to limited field of view, semantic ambiguity among objects, and lack of structured spatial reasoning. In this work, we propose GeoNav, a geospatially aware multimodal agent to enable long-range navigation. GeoNav operates in three phases-landmark navigation, target search, and precise localization-mimicking human coarse-to-fine spatial strategies. To support such reasoning, it dynamically builds two different types of spatial memory. The first is a global but schematic cognitive map, which fuses prior textual geographic knowledge and embodied visual cues into a top-down, annotated form for fast navigation to the landmark region. The second is a local but delicate scene graph representing hierarchical spatial relationships between blocks, landmarks, and objects, which is used for definite target localization. On top of this structured representation, GeoNav employs a spatially aware, multimodal chain-of-thought prompting mechanism to enable multimodal large language models with efficient and interpretable decision-making across stages. On the CityNav urban navigation benchmark, GeoNav surpasses the current state-of-the-art by up to 12.53% in success rate and significantly improves navigation efficiency, even in hard-level tasks. Ablation studies highlight the importance of each module, showcasing how geospatial representations and coarse-to-fine reasoning enhance UAV navigation.




Abstract:Visual grounding aims to ground an image region through natural language, which heavily relies on cross-modal alignment. Most existing methods transfer visual/linguistic knowledge separately by fully fine-tuning uni-modal pre-trained models, followed by a simple stack of visual-language transformers for multimodal fusion. However, these approaches not only limit adequate interaction between visual and linguistic contexts, but also incur significant computational costs. Therefore, to address these issues, we explore a step-wise multimodal fusion and adaption framework, namely SwimVG. Specifically, SwimVG proposes step-wise multimodal prompts (Swip) and cross-modal interactive adapters (CIA) for visual grounding, replacing the cumbersome transformer stacks for multimodal fusion. Swip can improve {the} alignment between the vision and language representations step by step, in a token-level fusion manner. In addition, weight-level CIA further promotes multimodal fusion by cross-modal interaction. Swip and CIA are both parameter-efficient paradigms, and they fuse the cross-modal features from shallow to deep layers gradually. Experimental results on four widely-used benchmarks demonstrate that SwimVG achieves remarkable abilities and considerable benefits in terms of efficiency. Our code is available at https://github.com/liuting20/SwimVG.




Abstract:The vision tokens in multimodal large language models usually exhibit significant spatial and temporal redundancy and take up most of the input tokens, which harms their inference efficiency. To solve this problem, some recent works were introduced to drop the unimportant tokens during inference where the importance of each token is decided only by the information in either the vision encoding stage or the prefilling stage. In this paper, we propose Multi-stage Token Dropping (MustDrop) to measure the importance of each token from the whole lifecycle, including the vision encoding stage, prefilling stage, and decoding stage. Concretely, in the visual encoding stage, MustDrop merges spatially adjacent tokens with high similarity, and establishes a key token set to retain the most vision-critical tokens, preventing them from being discarded in later stages. In the prefilling stage, MustDrop further compresses vision tokens by the guidance of text semantics, with a dual-attention filtering strategy. In the decoding stage, an output-aware cache policy is proposed to further reduce the size of the KV cache. By leveraging tailored strategies in the multi-stage process, MustDrop can more precisely recognize the important and redundant tokens, thus achieving an optimal balance between performance and efficiency. For instance, MustDrop reduces about 88.5\% FLOPs on LLaVA with a compression ratio of 92.2\% while maintaining comparable accuracy. Our codes are available at \url{https://github.com/liuting20/MustDrop}.
Abstract:Decentralized Federated Learning (DFL) surpasses Centralized Federated Learning (CFL) in terms of faster training, privacy preservation, and light communication, making it a promising alternative in the field of federated learning. However, DFL still exhibits significant disparities with CFL in terms of generalization ability such as rarely theoretical understanding and degraded empirical performance due to severe inconsistency. In this paper, we enhance the consistency of DFL by developing an opposite lookahead enhancement technique (Ole), yielding OledFL to optimize the initialization of each client in each communication round, thus significantly improving both the generalization and convergence speed. Moreover, we rigorously establish its convergence rate in non-convex setting and characterize its generalization bound through uniform stability, which provides concrete reasons why OledFL can achieve both the fast convergence speed and high generalization ability. Extensive experiments conducted on the CIFAR10 and CIFAR100 datasets with Dirichlet and Pathological distributions illustrate that our OledFL can achieve up to 5\% performance improvement and 8$\times$ speedup, compared to the most popular DFedAvg optimizer in DFL.