Abstract:Modern robot navigation systems encounter difficulties in diverse and complex indoor environments. Traditional approaches rely on multiple modules with small models or rule-based systems and thus lack adaptability to new environments. To address this, we developed Astra, a comprehensive dual-model architecture, Astra-Global and Astra-Local, for mobile robot navigation. Astra-Global, a multimodal LLM, processes vision and language inputs to perform self and goal localization using a hybrid topological-semantic graph as the global map, and outperforms traditional visual place recognition methods. Astra-Local, a multitask network, handles local path planning and odometry estimation. Its 4D spatial-temporal encoder, trained through self-supervised learning, generates robust 4D features for downstream tasks. The planning head utilizes flow matching and a novel masked ESDF loss to minimize collision risks for generating local trajectories, and the odometry head integrates multi-sensor inputs via a transformer encoder to predict the relative pose of the robot. Deployed on real in-house mobile robots, Astra achieves high end-to-end mission success rate across diverse indoor environments.
Abstract:Urban design is a multifaceted process that demands careful consideration of site-specific constraints and collaboration among diverse professionals and stakeholders. The advent of generative artificial intelligence (GenAI) offers transformative potential by improving the efficiency of design generation and facilitating the communication of design ideas. However, most existing approaches are not well integrated with human design workflows. They often follow end-to-end pipelines with limited control, overlooking the iterative nature of real-world design. This study proposes a stepwise generative urban design framework that integrates multimodal diffusion models with human expertise to enable more adaptive and controllable design processes. Instead of generating design outcomes in a single end-to-end process, the framework divides the process into three key stages aligned with established urban design workflows: (1) road network and land use planning, (2) building layout planning, and (3) detailed planning and rendering. At each stage, multimodal diffusion models generate preliminary designs based on textual prompts and image-based constraints, which can then be reviewed and refined by human designers. We design an evaluation framework to assess the fidelity, compliance, and diversity of the generated designs. Experiments using data from Chicago and New York City demonstrate that our framework outperforms baseline models and end-to-end approaches across all three dimensions. This study underscores the benefits of multimodal diffusion models and stepwise generation in preserving human control and facilitating iterative refinements, laying the groundwork for human-AI interaction in urban design solutions.
Abstract:Generative AI offers new opportunities for automating urban planning by creating site-specific urban layouts and enabling flexible design exploration. However, existing approaches often struggle to produce realistic and practical designs at scale. Therefore, we adapt a state-of-the-art Stable Diffusion model, extended with ControlNet, to generate high-fidelity satellite imagery conditioned on land use descriptions, infrastructure, and natural environments. To overcome data availability limitations, we spatially link satellite imagery with structured land use and constraint information from OpenStreetMap. Using data from three major U.S. cities, we demonstrate that the proposed diffusion model generates realistic and diverse urban landscapes by varying land-use configurations, road networks, and water bodies, facilitating cross-city learning and design diversity. We also systematically evaluate the impacts of varying language prompts and control imagery on the quality of satellite imagery generation. Our model achieves high FID and KID scores and demonstrates robustness across diverse urban contexts. Qualitative assessments from urban planners and the general public show that generated images align closely with design descriptions and constraints, and are often preferred over real images. This work establishes a benchmark for controlled urban imagery generation and highlights the potential of generative AI as a tool for enhancing planning workflows and public engagement.
Abstract:Transportation mode share analysis is important to various real-world transportation tasks as it helps researchers understand the travel behaviors and choices of passengers. A typical example is the prediction of communities' travel mode share by accounting for their sociodemographics like age, income, etc., and travel modes' attributes (e.g. travel cost and time). However, there exist only limited efforts in integrating the structure of the urban built environment, e.g., road networks, into the mode share models to capture the impacts of the built environment. This task usually requires manual feature engineering or prior knowledge of the urban design features. In this study, we propose deep hybrid models (DHM), which directly combine road networks and sociodemographic features as inputs for travel mode share analysis. Using graph embedding (GE) techniques, we enhance travel demand models with a more powerful representation of urban structures. In experiments of mode share prediction in Chicago, results demonstrate that DHM can provide valuable spatial insights into the sociodemographic structure, improving the performance of travel demand models in estimating different mode shares at the city level. Specifically, DHM improves the results by more than 20\% while retaining the interpretation power of the choice models, demonstrating its superiority in interpretability, prediction accuracy, and geographical insights.
Abstract:Short-term demand forecasting for on-demand ride-hailing services is one of the fundamental issues in intelligent transportation systems. However, previous travel demand forecasting research predominantly focused on improving prediction accuracy, ignoring fairness issues such as systematic underestimations of travel demand in disadvantaged neighborhoods. This study investigates how to measure, evaluate, and enhance prediction fairness between disadvantaged and privileged communities in spatial-temporal demand forecasting of ride-hailing services. A two-pronged approach is taken to reduce the demand prediction bias. First, we develop a novel deep learning model architecture, named socially aware neural network (SA-Net), to integrate the socio-demographics and ridership information for fair demand prediction through an innovative socially-aware convolution operation. Second, we propose a bias-mitigation regularization method to mitigate the mean percentage prediction error gap between different groups. The experimental results, validated on the real-world Chicago Transportation Network Company (TNC) data, show that the de-biasing SA-Net can achieve better predictive performance in both prediction accuracy and fairness. Specifically, the SA-Net improves prediction accuracy for both the disadvantaged and privileged groups compared with the state-of-the-art models. When coupled with the bias mitigation regularization method, the de-biasing SA-Net effectively bridges the mean percentage prediction error gap between the disadvantaged and privileged groups, and also protects the disadvantaged regions against systematic underestimation of TNC demand. Our proposed de-biasing method can be adopted in many existing short-term travel demand estimation models, and can be utilized for various other spatial-temporal prediction tasks such as crime incidents predictions.
Abstract:Recent studies have significantly improved the prediction accuracy of travel demand using graph neural networks. However, these studies largely ignored uncertainty that inevitably exists in travel demand prediction. To fill this gap, this study proposes a framework of probabilistic graph neural networks (Prob-GNN) to quantify the spatiotemporal uncertainty of travel demand. This Prob-GNN framework is substantiated by deterministic and probabilistic assumptions, and empirically applied to the task of predicting the transit and ridesharing demand in Chicago. We found that the probabilistic assumptions (e.g. distribution tail, support) have a greater impact on uncertainty prediction than the deterministic ones (e.g. deep modules, depth). Among the family of Prob-GNNs, the GNNs with truncated Gaussian and Laplace distributions achieve the highest performance in transit and ridesharing data. Even under significant domain shifts, Prob-GNNs can predict the ridership uncertainty in a stable manner, when the models are trained on pre-COVID data and tested across multiple periods during and after the COVID-19 pandemic. Prob-GNNs also reveal the spatiotemporal pattern of uncertainty, which is concentrated on the afternoon peak hours and the areas with large travel volumes. Overall, our findings highlight the importance of incorporating randomness into deep learning for spatiotemporal ridership prediction. Future research should continue to investigate versatile probabilistic assumptions to capture behavioral randomness, and further develop methods to quantify uncertainty to build resilient cities.
Abstract:Classical demand modeling analyzes travel behavior using only low-dimensional numeric data (i.e. sociodemographics and travel attributes) but not high-dimensional urban imagery. However, travel behavior depends on the factors represented by both numeric data and urban imagery, thus necessitating a synergetic framework to combine them. This study creates a theoretical framework of deep hybrid models with a crossing structure consisting of a mixing operator and a behavioral predictor, thus integrating the numeric and imagery data into a latent space. Empirically, this framework is applied to analyze travel mode choice using the MyDailyTravel Survey from Chicago as the numeric inputs and the satellite images as the imagery inputs. We found that deep hybrid models outperform both the traditional demand models and the recent deep learning in predicting the aggregate and disaggregate travel behavior with our supervision-as-mixing design. The latent space in deep hybrid models can be interpreted, because it reveals meaningful spatial and social patterns. The deep hybrid models can also generate new urban images that do not exist in reality and interpret them with economic theory, such as computing substitution patterns and social welfare changes. Overall, the deep hybrid models demonstrate the complementarity between the low-dimensional numeric and high-dimensional imagery data and between the traditional demand modeling and recent deep learning. It generalizes the latent classes and variables in classical hybrid demand models to a latent space, and leverages the computational power of deep learning for imagery while retaining the economic interpretability on the microeconomics foundation.
Abstract:Estimating health benefits of reducing fossil fuel use from improved air quality provides important rationales for carbon emissions abatement. Simulating pollution concentration is a crucial step of the estimation, but traditional approaches often rely on complicated chemical transport models that require extensive expertise and computational resources. In this study, we develop a novel and succinct machine learning framework that is able to provide precise and robust annual average fine particle (PM2.5) concentration estimations directly from a high-resolution fossil energy use data set. The accessibility and applicability of this framework show great potentials of machine learning approaches for integrated assessment studies. Applications of the framework with Chinese data reveal highly heterogeneous health benefits of reducing fossil fuel use in different sectors and regions in China with a mean of \$34/tCO2 and a standard deviation of \$84/tCO2. Reducing rural and residential coal use offers the highest co-benefits with a mean of \$360/tCO2. Our findings prompt careful policy designs to maximize cost-effectiveness in the transition towards a carbon-neutral energy system.