Abstract:Watermarking becomes one of the pivotal solutions to trace and verify the origin of synthetic images generated by artificial intelligence models, but it is not free of risks. Recent studies demonstrate the capability to forge watermarks from a target image onto cover images via adversarial optimization without knowledge of the target generative model and watermark schemes. In this paper, we uncover a greater risk of an optimization-free and universal watermark forgery that harnesses existing regenerative diffusion models. Our proposed forgery attack, PnP (Plug-and-Plant), seamlessly extracts and integrates the target watermark via regenerating the image, without needing any additional optimization routine. It allows for universal watermark forgery that works independently of the target image's origin or the watermarking model used. We explore the watermarked latent extracted from the target image and visual-textual context of cover images as priors to guide sampling of the regenerative process. Extensive evaluation on 24 scenarios of model-data-watermark combinations demonstrates that PnP can successfully forge the watermark (up to 100% detectability and user attribution), and maintain the best visual perception. By bypassing model retraining and enabling adaptability to any image, our approach significantly broadens the scope of forgery attacks, presenting a greater challenge to the security of current watermarking techniques for diffusion models and the authority of watermarking schemes in synthetic data generation and governance.
Abstract:In the expanding field of generative artificial intelligence, integrating robust watermarking technologies is essential to protect intellectual property and maintain content authenticity. Traditionally, watermarking techniques have been developed primarily for rich information media such as images and audio. However, these methods have not been adequately adapted for graph-based data, particularly molecular graphs. Latent 3D graph diffusion(LDM-3DG) is an ascendant approach in the molecular graph generation field. This model effectively manages the complexities of molecular structures, preserving essential symmetries and topological features. We adapt the Gaussian Shading, a proven performance lossless watermarking technique, to the latent graph diffusion domain to protect this sophisticated new technology. Our adaptation simplifies the watermark diffusion process through duplication and padding, making it adaptable and suitable for various message types. We conduct several experiments using the LDM-3DG model on publicly available datasets QM9 and Drugs, to assess the robustness and effectiveness of our technique. Our results demonstrate that the watermarked molecules maintain statistical parity in 9 out of 10 performance metrics compared to the original. Moreover, they exhibit a 100% detection rate and a 99% extraction rate in a 2D decoded pipeline, while also showing robustness against post-editing attacks.