Alert button
Picture for Paul Muller

Paul Muller

Alert button

Combining Tree-Search, Generative Models, and Nash Bargaining Concepts in Game-Theoretic Reinforcement Learning

Add code
Bookmark button
Alert button
Feb 01, 2023
Zun Li, Marc Lanctot, Kevin R. McKee, Luke Marris, Ian Gemp, Daniel Hennes, Paul Muller, Kate Larson, Yoram Bachrach, Michael P. Wellman

Figure 1 for Combining Tree-Search, Generative Models, and Nash Bargaining Concepts in Game-Theoretic Reinforcement Learning
Figure 2 for Combining Tree-Search, Generative Models, and Nash Bargaining Concepts in Game-Theoretic Reinforcement Learning
Figure 3 for Combining Tree-Search, Generative Models, and Nash Bargaining Concepts in Game-Theoretic Reinforcement Learning
Figure 4 for Combining Tree-Search, Generative Models, and Nash Bargaining Concepts in Game-Theoretic Reinforcement Learning
Viaarxiv icon

Developing, Evaluating and Scaling Learning Agents in Multi-Agent Environments

Add code
Bookmark button
Alert button
Sep 22, 2022
Ian Gemp, Thomas Anthony, Yoram Bachrach, Avishkar Bhoopchand, Kalesha Bullard, Jerome Connor, Vibhavari Dasagi, Bart De Vylder, Edgar Duenez-Guzman, Romuald Elie, Richard Everett, Daniel Hennes, Edward Hughes, Mina Khan, Marc Lanctot, Kate Larson, Guy Lever, Siqi Liu, Luke Marris, Kevin R. McKee, Paul Muller, Julien Perolat, Florian Strub, Andrea Tacchetti, Eugene Tarassov, Zhe Wang, Karl Tuyls

Viaarxiv icon

Learning Correlated Equilibria in Mean-Field Games

Add code
Bookmark button
Alert button
Aug 22, 2022
Paul Muller, Romuald Elie, Mark Rowland, Mathieu Lauriere, Julien Perolat, Sarah Perrin, Matthieu Geist, Georgios Piliouras, Olivier Pietquin, Karl Tuyls

Figure 1 for Learning Correlated Equilibria in Mean-Field Games
Figure 2 for Learning Correlated Equilibria in Mean-Field Games
Figure 3 for Learning Correlated Equilibria in Mean-Field Games
Figure 4 for Learning Correlated Equilibria in Mean-Field Games
Viaarxiv icon

Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning

Add code
Bookmark button
Alert button
Jun 30, 2022
Julien Perolat, Bart de Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer, Paul Muller, Jerome T. Connor, Neil Burch, Thomas Anthony, Stephen McAleer, Romuald Elie, Sarah H. Cen, Zhe Wang, Audrunas Gruslys, Aleksandra Malysheva, Mina Khan, Sherjil Ozair, Finbarr Timbers, Toby Pohlen, Tom Eccles, Mark Rowland, Marc Lanctot, Jean-Baptiste Lespiau, Bilal Piot, Shayegan Omidshafiei, Edward Lockhart, Laurent Sifre, Nathalie Beauguerlange, Remi Munos, David Silver, Satinder Singh, Demis Hassabis, Karl Tuyls

Figure 1 for Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning
Figure 2 for Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning
Figure 3 for Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning
Figure 4 for Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning
Viaarxiv icon

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

Add code
Bookmark button
Alert button
Mar 22, 2022
Mathieu Laurière, Sarah Perrin, Sertan Girgin, Paul Muller, Ayush Jain, Theophile Cabannes, Georgios Piliouras, Julien Pérolat, Romuald Élie, Olivier Pietquin, Matthieu Geist

Figure 1 for Scalable Deep Reinforcement Learning Algorithms for Mean Field Games
Figure 2 for Scalable Deep Reinforcement Learning Algorithms for Mean Field Games
Figure 3 for Scalable Deep Reinforcement Learning Algorithms for Mean Field Games
Figure 4 for Scalable Deep Reinforcement Learning Algorithms for Mean Field Games
Viaarxiv icon

Multi-Agent Training beyond Zero-Sum with Correlated Equilibrium Meta-Solvers

Add code
Bookmark button
Alert button
Jun 22, 2021
Luke Marris, Paul Muller, Marc Lanctot, Karl Tuyls, Thore Graepel

Figure 1 for Multi-Agent Training beyond Zero-Sum with Correlated Equilibrium Meta-Solvers
Figure 2 for Multi-Agent Training beyond Zero-Sum with Correlated Equilibrium Meta-Solvers
Figure 3 for Multi-Agent Training beyond Zero-Sum with Correlated Equilibrium Meta-Solvers
Figure 4 for Multi-Agent Training beyond Zero-Sum with Correlated Equilibrium Meta-Solvers
Viaarxiv icon

Time-series Imputation of Temporally-occluded Multiagent Trajectories

Add code
Bookmark button
Alert button
Jun 08, 2021
Shayegan Omidshafiei, Daniel Hennes, Marta Garnelo, Eugene Tarassov, Zhe Wang, Romuald Elie, Jerome T. Connor, Paul Muller, Ian Graham, William Spearman, Karl Tuyls

Figure 1 for Time-series Imputation of Temporally-occluded Multiagent Trajectories
Figure 2 for Time-series Imputation of Temporally-occluded Multiagent Trajectories
Figure 3 for Time-series Imputation of Temporally-occluded Multiagent Trajectories
Figure 4 for Time-series Imputation of Temporally-occluded Multiagent Trajectories
Viaarxiv icon

From Motor Control to Team Play in Simulated Humanoid Football

Add code
Bookmark button
Alert button
May 25, 2021
Siqi Liu, Guy Lever, Zhe Wang, Josh Merel, S. M. Ali Eslami, Daniel Hennes, Wojciech M. Czarnecki, Yuval Tassa, Shayegan Omidshafiei, Abbas Abdolmaleki, Noah Y. Siegel, Leonard Hasenclever, Luke Marris, Saran Tunyasuvunakool, H. Francis Song, Markus Wulfmeier, Paul Muller, Tuomas Haarnoja, Brendan D. Tracey, Karl Tuyls, Thore Graepel, Nicolas Heess

Figure 1 for From Motor Control to Team Play in Simulated Humanoid Football
Figure 2 for From Motor Control to Team Play in Simulated Humanoid Football
Figure 3 for From Motor Control to Team Play in Simulated Humanoid Football
Figure 4 for From Motor Control to Team Play in Simulated Humanoid Football
Viaarxiv icon

Game Plan: What AI can do for Football, and What Football can do for AI

Add code
Bookmark button
Alert button
Nov 18, 2020
Karl Tuyls, Shayegan Omidshafiei, Paul Muller, Zhe Wang, Jerome Connor, Daniel Hennes, Ian Graham, William Spearman, Tim Waskett, Dafydd Steele, Pauline Luc, Adria Recasens, Alexandre Galashov, Gregory Thornton, Romuald Elie, Pablo Sprechmann, Pol Moreno, Kris Cao, Marta Garnelo, Praneet Dutta, Michal Valko, Nicolas Heess, Alex Bridgland, Julien Perolat, Bart De Vylder, Ali Eslami, Mark Rowland, Andrew Jaegle, Remi Munos, Trevor Back, Razia Ahamed, Simon Bouton, Nathalie Beauguerlange, Jackson Broshear, Thore Graepel, Demis Hassabis

Figure 1 for Game Plan: What AI can do for Football, and What Football can do for AI
Figure 2 for Game Plan: What AI can do for Football, and What Football can do for AI
Figure 3 for Game Plan: What AI can do for Football, and What Football can do for AI
Figure 4 for Game Plan: What AI can do for Football, and What Football can do for AI
Viaarxiv icon