Alert button
Picture for Florian Strub

Florian Strub

Alert button

The Edge of Orthogonality: A Simple View of What Makes BYOL Tick

Feb 09, 2023
Pierre H. Richemond, Allison Tam, Yunhao Tang, Florian Strub, Bilal Piot, Felix Hill

Figure 1 for The Edge of Orthogonality: A Simple View of What Makes BYOL Tick
Figure 2 for The Edge of Orthogonality: A Simple View of What Makes BYOL Tick
Figure 3 for The Edge of Orthogonality: A Simple View of What Makes BYOL Tick
Figure 4 for The Edge of Orthogonality: A Simple View of What Makes BYOL Tick

Self-predictive unsupervised learning methods such as BYOL or SimSiam have shown impressive results, and counter-intuitively, do not collapse to trivial representations. In this work, we aim at exploring the simplest possible mathematical arguments towards explaining the underlying mechanisms behind self-predictive unsupervised learning. We start with the observation that those methods crucially rely on the presence of a predictor network (and stop-gradient). With simple linear algebra, we show that when using a linear predictor, the optimal predictor is close to an orthogonal projection, and propose a general framework based on orthonormalization that enables to interpret and give intuition on why BYOL works. In addition, this framework demonstrates the crucial role of the exponential moving average and stop-gradient operator in BYOL as an efficient orthonormalization mechanism. We use these insights to propose four new \emph{closed-form predictor} variants of BYOL to support our analysis. Our closed-form predictors outperform standard linear trainable predictor BYOL at $100$ and $300$ epochs (top-$1$ linear accuracy on ImageNet).

Viaarxiv icon

SemPPL: Predicting pseudo-labels for better contrastive representations

Jan 12, 2023
Matko Bošnjak, Pierre H. Richemond, Nenad Tomasev, Florian Strub, Jacob C. Walker, Felix Hill, Lars Holger Buesing, Razvan Pascanu, Charles Blundell, Jovana Mitrovic

Figure 1 for SemPPL: Predicting pseudo-labels for better contrastive representations
Figure 2 for SemPPL: Predicting pseudo-labels for better contrastive representations
Figure 3 for SemPPL: Predicting pseudo-labels for better contrastive representations
Figure 4 for SemPPL: Predicting pseudo-labels for better contrastive representations

Learning from large amounts of unsupervised data and a small amount of supervision is an important open problem in computer vision. We propose a new semi-supervised learning method, Semantic Positives via Pseudo-Labels (SemPPL), that combines labelled and unlabelled data to learn informative representations. Our method extends self-supervised contrastive learning -- where representations are shaped by distinguishing whether two samples represent the same underlying datum (positives) or not (negatives) -- with a novel approach to selecting positives. To enrich the set of positives, we leverage the few existing ground-truth labels to predict the missing ones through a $k$-nearest neighbours classifier by using the learned embeddings of the labelled data. We thus extend the set of positives with datapoints having the same pseudo-label and call these semantic positives. We jointly learn the representation and predict bootstrapped pseudo-labels. This creates a reinforcing cycle. Strong initial representations enable better pseudo-label predictions which then improve the selection of semantic positives and lead to even better representations. SemPPL outperforms competing semi-supervised methods setting new state-of-the-art performance of $68.5\%$ and $76\%$ top-$1$ accuracy when using a ResNet-$50$ and training on $1\%$ and $10\%$ of labels on ImageNet, respectively. Furthermore, when using selective kernels, SemPPL significantly outperforms previous state-of-the-art achieving $72.3\%$ and $78.3\%$ top-$1$ accuracy on ImageNet with $1\%$ and $10\%$ labels, respectively, which improves absolute $+7.8\%$ and $+6.2\%$ over previous work. SemPPL also exhibits state-of-the-art performance over larger ResNet models as well as strong robustness, out-of-distribution and transfer performance.

Viaarxiv icon

Over-communicate no more: Situated RL agents learn concise communication protocols

Nov 02, 2022
Aleksandra Kalinowska, Elnaz Davoodi, Florian Strub, Kory W Mathewson, Ivana Kajic, Michael Bowling, Todd D Murphey, Patrick M Pilarski

Figure 1 for Over-communicate no more: Situated RL agents learn concise communication protocols
Figure 2 for Over-communicate no more: Situated RL agents learn concise communication protocols
Figure 3 for Over-communicate no more: Situated RL agents learn concise communication protocols
Figure 4 for Over-communicate no more: Situated RL agents learn concise communication protocols

While it is known that communication facilitates cooperation in multi-agent settings, it is unclear how to design artificial agents that can learn to effectively and efficiently communicate with each other. Much research on communication emergence uses reinforcement learning (RL) and explores unsituated communication in one-step referential tasks -- the tasks are not temporally interactive and lack time pressures typically present in natural communication. In these settings, agents may successfully learn to communicate, but they do not learn to exchange information concisely -- they tend towards over-communication and an inefficient encoding. Here, we explore situated communication in a multi-step task, where the acting agent has to forgo an environmental action to communicate. Thus, we impose an opportunity cost on communication and mimic the real-world pressure of passing time. We compare communication emergence under this pressure against learning to communicate with a cost on articulation effort, implemented as a per-message penalty (fixed and progressively increasing). We find that while all tested pressures can disincentivise over-communication, situated communication does it most effectively and, unlike the cost on effort, does not negatively impact emergence. Implementing an opportunity cost on communication in a temporally extended environment is a step towards embodiment, and might be a pre-condition for incentivising efficient, human-like communication.

Viaarxiv icon

Emergent Communication: Generalization and Overfitting in Lewis Games

Sep 30, 2022
Mathieu Rita, Corentin Tallec, Paul Michel, Jean-Bastien Grill, Olivier Pietquin, Emmanuel Dupoux, Florian Strub

Figure 1 for Emergent Communication: Generalization and Overfitting in Lewis Games
Figure 2 for Emergent Communication: Generalization and Overfitting in Lewis Games
Figure 3 for Emergent Communication: Generalization and Overfitting in Lewis Games
Figure 4 for Emergent Communication: Generalization and Overfitting in Lewis Games

Lewis signaling games are a class of simple communication games for simulating the emergence of language. In these games, two agents must agree on a communication protocol in order to solve a cooperative task. Previous work has shown that agents trained to play this game with reinforcement learning tend to develop languages that display undesirable properties from a linguistic point of view (lack of generalization, lack of compositionality, etc). In this paper, we aim to provide better understanding of this phenomenon by analytically studying the learning problem in Lewis games. As a core contribution, we demonstrate that the standard objective in Lewis games can be decomposed in two components: a co-adaptation loss and an information loss. This decomposition enables us to surface two potential sources of overfitting, which we show may undermine the emergence of a structured communication protocol. In particular, when we control for overfitting on the co-adaptation loss, we recover desired properties in the emergent languages: they are more compositional and generalize better.

* 36th Conference on Neural Information Processing Systems (NeurIPS 2022) 
Viaarxiv icon

Developing, Evaluating and Scaling Learning Agents in Multi-Agent Environments

Sep 22, 2022
Ian Gemp, Thomas Anthony, Yoram Bachrach, Avishkar Bhoopchand, Kalesha Bullard, Jerome Connor, Vibhavari Dasagi, Bart De Vylder, Edgar Duenez-Guzman, Romuald Elie, Richard Everett, Daniel Hennes, Edward Hughes, Mina Khan, Marc Lanctot, Kate Larson, Guy Lever, Siqi Liu, Luke Marris, Kevin R. McKee, Paul Muller, Julien Perolat, Florian Strub, Andrea Tacchetti, Eugene Tarassov, Zhe Wang, Karl Tuyls

The Game Theory & Multi-Agent team at DeepMind studies several aspects of multi-agent learning ranging from computing approximations to fundamental concepts in game theory to simulating social dilemmas in rich spatial environments and training 3-d humanoids in difficult team coordination tasks. A signature aim of our group is to use the resources and expertise made available to us at DeepMind in deep reinforcement learning to explore multi-agent systems in complex environments and use these benchmarks to advance our understanding. Here, we summarise the recent work of our team and present a taxonomy that we feel highlights many important open challenges in multi-agent research.

* Published in AI Communications 2022 
Viaarxiv icon

Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning

Jun 30, 2022
Julien Perolat, Bart de Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer, Paul Muller, Jerome T. Connor, Neil Burch, Thomas Anthony, Stephen McAleer, Romuald Elie, Sarah H. Cen, Zhe Wang, Audrunas Gruslys, Aleksandra Malysheva, Mina Khan, Sherjil Ozair, Finbarr Timbers, Toby Pohlen, Tom Eccles, Mark Rowland, Marc Lanctot, Jean-Baptiste Lespiau, Bilal Piot, Shayegan Omidshafiei, Edward Lockhart, Laurent Sifre, Nathalie Beauguerlange, Remi Munos, David Silver, Satinder Singh, Demis Hassabis, Karl Tuyls

Figure 1 for Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning
Figure 2 for Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning
Figure 3 for Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning
Figure 4 for Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning

We introduce DeepNash, an autonomous agent capable of learning to play the imperfect information game Stratego from scratch, up to a human expert level. Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered. This popular game has an enormous game tree on the order of $10^{535}$ nodes, i.e., $10^{175}$ times larger than that of Go. It has the additional complexity of requiring decision-making under imperfect information, similar to Texas hold'em poker, which has a significantly smaller game tree (on the order of $10^{164}$ nodes). Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome. Episodes are long, with often hundreds of moves before a player wins, and situations in Stratego can not easily be broken down into manageably-sized sub-problems as in poker. For these reasons, Stratego has been a grand challenge for the field of AI for decades, and existing AI methods barely reach an amateur level of play. DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego via self-play. The Regularised Nash Dynamics (R-NaD) algorithm, a key component of DeepNash, converges to an approximate Nash equilibrium, instead of 'cycling' around it, by directly modifying the underlying multi-agent learning dynamics. DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform, competing with human expert players.

Viaarxiv icon

Learning Natural Language Generation from Scratch

Sep 20, 2021
Alice Martin Donati, Guillaume Quispe, Charles Ollion, Sylvain Le Corff, Florian Strub, Olivier Pietquin

Figure 1 for Learning Natural Language Generation from Scratch
Figure 2 for Learning Natural Language Generation from Scratch
Figure 3 for Learning Natural Language Generation from Scratch
Figure 4 for Learning Natural Language Generation from Scratch

This paper introduces TRUncated ReinForcement Learning for Language (TrufLL), an original ap-proach to train conditional language models from scratch by only using reinforcement learning (RL). AsRL methods unsuccessfully scale to large action spaces, we dynamically truncate the vocabulary spaceusing a generic language model. TrufLL thus enables to train a language agent by solely interacting withits environment without any task-specific prior knowledge; it is only guided with a task-agnostic languagemodel. Interestingly, this approach avoids the dependency to labelled datasets and inherently reduces pre-trained policy flaws such as language or exposure biases. We evaluate TrufLL on two visual questiongeneration tasks, for which we report positive results over performance and language metrics, which wethen corroborate with a human evaluation. To our knowledge, it is the first approach that successfullylearns a language generation policy (almost) from scratch.

Viaarxiv icon

Don't Do What Doesn't Matter: Intrinsic Motivation with Action Usefulness

May 31, 2021
Mathieu Seurin, Florian Strub, Philippe Preux, Olivier Pietquin

Figure 1 for Don't Do What Doesn't Matter: Intrinsic Motivation with Action Usefulness
Figure 2 for Don't Do What Doesn't Matter: Intrinsic Motivation with Action Usefulness
Figure 3 for Don't Do What Doesn't Matter: Intrinsic Motivation with Action Usefulness
Figure 4 for Don't Do What Doesn't Matter: Intrinsic Motivation with Action Usefulness

Sparse rewards are double-edged training signals in reinforcement learning: easy to design but hard to optimize. Intrinsic motivation guidances have thus been developed toward alleviating the resulting exploration problem. They usually incentivize agents to look for new states through novelty signals. Yet, such methods encourage exhaustive exploration of the state space rather than focusing on the environment's salient interaction opportunities. We propose a new exploration method, called Don't Do What Doesn't Matter (DoWhaM), shifting the emphasis from state novelty to state with relevant actions. While most actions consistently change the state when used, \textit{e.g.} moving the agent, some actions are only effective in specific states, \textit{e.g.}, \emph{opening} a door, \emph{grabbing} an object. DoWhaM detects and rewards actions that seldom affect the environment. We evaluate DoWhaM on the procedurally-generated environment MiniGrid, against state-of-the-art methods and show that DoWhaM greatly reduces sample complexity.

* Accepted at Internationnal Joint Conference on Artificial Intelligence (IJCAI'21) and Self-Supervision for Reinforcement Learning Workshop (SSL-RL @ICLR'21) 
Viaarxiv icon

Broaden Your Views for Self-Supervised Video Learning

Mar 30, 2021
Adrià Recasens, Pauline Luc, Jean-Baptiste Alayrac, Luyu Wang, Florian Strub, Corentin Tallec, Mateusz Malinowski, Viorica Patraucean, Florent Altché, Michal Valko, Jean-Bastien Grill, Aäron van den Oord, Andrew Zisserman

Figure 1 for Broaden Your Views for Self-Supervised Video Learning
Figure 2 for Broaden Your Views for Self-Supervised Video Learning
Figure 3 for Broaden Your Views for Self-Supervised Video Learning
Figure 4 for Broaden Your Views for Self-Supervised Video Learning

Most successful self-supervised learning methods are trained to align the representations of two independent views from the data. State-of-the-art methods in video are inspired by image techniques, where these two views are similarly extracted by cropping and augmenting the resulting crop. However, these methods miss a crucial element in the video domain: time. We introduce BraVe, a self-supervised learning framework for video. In BraVe, one of the views has access to a narrow temporal window of the video while the other view has a broad access to the video content. Our models learn to generalise from the narrow view to the general content of the video. Furthermore, BraVe processes the views with different backbones, enabling the use of alternative augmentations or modalities into the broad view such as optical flow, randomly convolved RGB frames, audio or their combinations. We demonstrate that BraVe achieves state-of-the-art results in self-supervised representation learning on standard video and audio classification benchmarks including UCF101, HMDB51, Kinetics, ESC-50 and AudioSet.

Viaarxiv icon