Abstract:Instruction-tuned models are trained on crowdsourcing datasets with task instructions to achieve superior performance. However, in this work we raise security concerns about this training paradigm. Our studies demonstrate that an attacker can inject backdoors by issuing very few malicious instructions among thousands of gathered data and control model behavior through data poisoning, without even the need of modifying data instances or labels themselves. Through such instruction attacks, the attacker can achieve over 90% attack success rate across four commonly used NLP datasets, and cause persistent backdoors that are easily transferred to 15 diverse datasets zero-shot. In this way, the attacker can directly apply poisoned instructions designed for one dataset on many other datasets. Moreover, the poisoned model cannot be cured by continual learning. Lastly, instruction attacks show resistance to existing inference-time defense. These findings highlight the need for more robust defenses against data poisoning attacks in instructiontuning models and underscore the importance of ensuring data quality in instruction crowdsourcing.
Abstract:Event temporal reasoning aims at identifying the temporal relations between two or more events. However, knowledge conflicts arise when there is a mismatch between the actual temporal relations of events in the context and the prior knowledge or biases learned by the model. We first systematically define distinct kinds of bias in event temporal reasoning, which include event relation prior bias, tense bias, narrative bias, and dependency bias, as indicators to study knowledge conflicts. To mitigate such event-related knowledge conflict, we introduce a Counterfactual Data Augmentation based method that can be applied to both Pre-trained Language Models (PLMs) and Large Language Models (LLMs) either as additional training data or demonstrations for In-Context Learning. Experiments suggest the importance of mitigating knowledge conflicts in event temporal reasoning tasks for reducing hallucination and highlight the potential of counterfactual data augmentation for improving model performance.
Abstract:Entity bias widely affects pretrained (large) language models, causing them to excessively rely on (biased) parametric knowledge to make unfaithful predictions. Although causality-inspired methods have shown great potential to mitigate entity bias, it is hard to precisely estimate the parameters of underlying causal models in practice. The rise of black-box LLMs also makes the situation even worse, because of their inaccessible parameters and uncalibrated logits. To address these problems, we propose a specific structured causal model (SCM) whose parameters are comparatively easier to estimate. Building upon this SCM, we propose causal intervention techniques to mitigate entity bias for both white-box and black-box settings. The proposed causal intervention perturbs the original entity with neighboring entities. This intervention reduces specific biasing information pertaining to the original entity while still preserving sufficient common predictive information from similar entities. When evaluated on the relation extraction task, our training-time intervention significantly improves the F1 score of RoBERTa by 5.7 points on EntRED, in which spurious shortcuts between entities and labels are removed. Meanwhile, our in-context intervention effectively reduces the knowledge conflicts between parametric knowledge and contextual knowledge in GPT-3.5 and improves the F1 score by 9.14 points on a challenging test set derived from Re-TACRED.
Abstract:Language models are often at risk of diverse backdoor attacks, especially data poisoning. Thus, it is important to investigate defense solutions for addressing them. Existing backdoor defense methods mainly focus on backdoor attacks with explicit triggers, leaving a universal defense against various backdoor attacks with diverse triggers largely unexplored. In this paper, we propose an end-to-end ensemble-based backdoor defense framework, DPoE (Denoised Product-of-Experts), which is inspired by the shortcut nature of backdoor attacks, to defend various backdoor attacks. DPoE consists of two models: a shallow model that captures the backdoor shortcuts and a main model that is prevented from learning the backdoor shortcuts. To address the label flip caused by backdoor attackers, DPoE incorporates a denoising design. Experiments on SST-2 dataset show that DPoE significantly improves the defense performance against various types of backdoor triggers including word-level, sentence-level, and syntactic triggers. Furthermore, DPoE is also effective under a more challenging but practical setting that mixes multiple types of trigger.
Abstract:Entity names play an effective role in relation extraction (RE) and often influence model performance. As a result, the entity names in the benchmarks' test sets significantly influence the evaluation of RE models. In this work, we find that the standard RE benchmarks' datasets have a large portion of incorrect entity annotations, low entity name diversity, and are prone to have shortcuts from entity names to ground-truth relations. These issues make the standard benchmarks far from reflecting the real-world scenarios. Hence, in this work, we present EntRED, a challenging RE benchmark with reduced shortcuts and higher diversity of entities. To build EntRED, we propose an end-to-end entity replacement pipeline based on causal inference (CI): ERIC. ERIC performs type-constrained replacements on entities to reduce the shortcuts from entity bias to ground-truth relations. ERIC applies CI in two aspects: 1) targeting the instances that need entity replacements, and 2) determining the candidate entities for replacements. We apply ERIC on TACRED to produce EntRED. Our EntRED evaluates whether the RE model can correctly extract the relations from the text instead of relying on entity bias. Empirical results reveal that even the strong RE model has a significant performance drop on EntRED, which memorizes entity name patterns instead of reasoning from the textual context. We release ERIC's source code and the EntRED benchmark at https://github.com/wangywUST/ENTRED.
Abstract:Goal-oriented Script Generation is a new task of generating a list of steps that can fulfill the given goal. In this paper, we propose to extend the task from the perspective of cognitive theory. Instead of a simple flat structure, the steps are typically organized hierarchically - Human often decompose a complex task into subgoals, where each subgoal can be further decomposed into steps. To establish the benchmark, we contribute a new dataset, propose several baseline methods, and set up evaluation metrics. Both automatic and human evaluation verify the high-quality of dataset, as well as the effectiveness of incorporating subgoals into hierarchical script generation. Furthermore, We also design and evaluate the model to discover subgoal, and find that it is a bit more difficult to decompose the goals than summarizing from segmented steps.
Abstract:Large language models (LLMs) encode parametric knowledge about world facts and have shown remarkable performance in knowledge-driven NLP tasks. However, their reliance on parametric knowledge may cause them to overlook contextual cues, leading to incorrect predictions in context-sensitive NLP tasks (e.g., knowledge acquisition tasks). In this paper, we seek to assess and enhance LLMs' contextual faithfulness in two aspects: knowledge conflict and prediction with abstention. We demonstrate that LLMs' faithfulness can be significantly improved using carefully designed prompting strategies. In particular, we identify opinion-based prompts and counterfactual demonstrations as the most effective methods. Opinion-based prompts reframe the context as a narrator's statement and inquire about the narrator's opinions, while counterfactual demonstrations use instances containing false facts to improve faithfulness in knowledge conflict situations. Neither technique requires additional training. We conduct experiments on three datasets of two standard NLP tasks, machine reading comprehension and relation extraction, and the results demonstrate significant improvement in faithfulness to contexts.
Abstract:Relation extraction (RE), which has relied on structurally annotated corpora for model training, has been particularly challenging in low-resource scenarios and domains. Recent literature has tackled low-resource RE by self-supervised learning, where the solution involves pretraining the relation embedding by RE-based objective and finetuning on labeled data by classification-based objective. However, a critical challenge to this approach is the gap in objectives, which prevents the RE model from fully utilizing the knowledge in pretrained representations. In this paper, we aim at bridging the gap and propose to pretrain and finetune the RE model using consistent objectives of contrastive learning. Since in this kind of representation learning paradigm, one relation may easily form multiple clusters in the representation space, we further propose a multi-center contrastive loss that allows one relation to form multiple clusters to better align with pretraining. Experiments on two document-level RE datasets, BioRED and Re-DocRED, demonstrate the effectiveness of our method. Particularly, when using 1% end-task training data, our method outperforms PLM-based RE classifier by 10.5% and 5.8% on the two datasets, respectively.
Abstract:Relation Extraction (RE) has been extended to cross-document scenarios because many relations are not simply described in a single document. This inevitably brings the challenge of efficient open-space evidence retrieval to support the inference of cross-document relations, along with the challenge of multi-hop reasoning on top of entities and evidence scattered in an open set of documents. To combat these challenges, we propose Mr.CoD, a multi-hop evidence retrieval method based on evidence path mining and ranking with adapted dense retrievers. We explore multiple variants of retrievers to show evidence retrieval is an essential part in cross-document RE. Experiments on CodRED show that evidence retrieval with Mr.Cod effectively acquires cross-document evidence that essentially supports open-setting cross-document RE. Additionally, we show that Mr.CoD facilitates evidence retrieval and boosts end-to-end RE performance with effective multi-hop reasoning in both closed and open settings of RE.
Abstract:Two key obstacles in biomedical relation extraction (RE) are the scarcity of annotations and the prevalence of instances without explicitly pre-defined labels due to low annotation coverage. Existing approaches, which treat biomedical RE as a multi-class classification task, often result in poor generalization in low-resource settings and do not have the ability to make selective prediction on unknown cases but give a guess from seen relations, hindering the applicability of those approaches. We present NBR, which converts biomedical RE as natural language inference formulation through indirect supervision. By converting relations to natural language hypotheses, NBR is capable of exploiting semantic cues to alleviate annotation scarcity. By incorporating a ranking-based loss that implicitly calibrates abstinent instances, NBR learns a clearer decision boundary and is instructed to abstain on uncertain instances. Extensive experiments on three widely-used biomedical RE benchmarks, namely ChemProt, DDI and GAD, verify the effectiveness of NBR in both full-set and low-resource regimes. Our analysis demonstrates that indirect supervision benefits biomedical RE even when a domain gap exists, and combining NLI knowledge with biomedical knowledge leads to the best performance gains.