Zhejiang University
Abstract:Human mobility patterns have shown significant applications in policy-decision scenarios and economic behavior researches. The human mobility simulation task aims to generate human mobility trajectories given a small set of trajectory data, which have aroused much concern due to the scarcity and sparsity of human mobility data. Existing methods mostly rely on the static relationships of locations, while largely neglect the dynamic spatiotemporal effects of locations. On the one hand, spatiotemporal correspondences of visit distributions reveal the spatial proximity and the functionality similarity of locations. On the other hand, the varying durations in different locations hinder the iterative generation process of the mobility trajectory. Therefore, we propose a novel framework to model the dynamic spatiotemporal effects of locations, namely SpatioTemporal-Augmented gRaph neural networks (STAR). The STAR framework designs various spatiotemporal graphs to capture the spatiotemporal correspondences and builds a novel dwell branch to simulate the varying durations in locations, which is finally optimized in an adversarial manner. The comprehensive experiments over four real datasets for the human mobility simulation have verified the superiority of STAR to state-of-the-art methods. Our code will be made publicly available.
Abstract:Inverse Reinforcement Learning (IRL) aims to reconstruct the reward function from expert demonstrations to facilitate policy learning, and has demonstrated its remarkable success in imitation learning. To promote expert-like behavior, existing IRL methods mainly focus on learning global reward functions to minimize the trajectory difference between the imitator and the expert. However, these global designs are still limited by the redundant noise and error propagation problems, leading to the unsuitable reward assignment and thus downgrading the agent capability in complex multi-stage tasks. In this paper, we propose a novel Curricular Subgoal-based Inverse Reinforcement Learning (CSIRL) framework, that explicitly disentangles one task with several local subgoals to guide agent imitation. Specifically, CSIRL firstly introduces decision uncertainty of the trained agent over expert trajectories to dynamically select subgoals, which directly determines the exploration boundary of different task stages. To further acquire local reward functions for each stage, we customize a meta-imitation objective based on these curricular subgoals to train an intrinsic reward generator. Experiments on the D4RL and autonomous driving benchmarks demonstrate that the proposed methods yields results superior to the state-of-the-art counterparts, as well as better interpretability. Our code is available at https://github.com/Plankson/CSIRL.
Abstract:Weight Average (WA) is an active research topic due to its simplicity in ensembling deep networks and the effectiveness in promoting generalization. Existing weight average approaches, however, are often carried out along only one training trajectory in a post-hoc manner (i.e., the weights are averaged after the entire training process is finished), which significantly degrades the diversity between networks and thus impairs the effectiveness in ensembling. In this paper, inspired by weight average, we propose Lookaround, a straightforward yet effective SGD-based optimizer leading to flatter minima with better generalization. Specifically, Lookaround iterates two steps during the whole training period: the around step and the average step. In each iteration, 1) the around step starts from a common point and trains multiple networks simultaneously, each on transformed data by a different data augmentation, and 2) the average step averages these trained networks to get the averaged network, which serves as the starting point for the next iteration. The around step improves the functionality diversity while the average step guarantees the weight locality of these networks during the whole training, which is essential for WA to work. We theoretically explain the superiority of Lookaround by convergence analysis, and make extensive experiments to evaluate Lookaround on popular benchmarks including CIFAR and ImageNet with both CNNs and ViTs, demonstrating clear superiority over state-of-the-arts. Our code is available at https://github.com/Ardcy/Lookaround.
Abstract:Decentralized stochastic gradient descent (D-SGD) allows collaborative learning on massive devices simultaneously without the control of a central server. However, existing theories claim that decentralization invariably undermines generalization. In this paper, we challenge the conventional belief and present a completely new perspective for understanding decentralized learning. We prove that D-SGD implicitly minimizes the loss function of an average-direction Sharpness-aware minimization (SAM) algorithm under general non-convex non-$\beta$-smooth settings. This surprising asymptotic equivalence reveals an intrinsic regularization-optimization trade-off and three advantages of decentralization: (1) there exists a free uncertainty evaluation mechanism in D-SGD to improve posterior estimation; (2) D-SGD exhibits a gradient smoothing effect; and (3) the sharpness regularization effect of D-SGD does not decrease as total batch size increases, which justifies the potential generalization benefit of D-SGD over centralized SGD (C-SGD) in large-batch scenarios.
Abstract:Graph Neural Networks (GNNs) have emerged as a powerful category of learning architecture for handling graph-structured data. However, existing GNNs typically ignore crucial structural characteristics in node-induced subgraphs, which thus limits their expressiveness for various downstream tasks. In this paper, we strive to strengthen the representative capabilities of GNNs by devising a dedicated plug-and-play normalization scheme, termed as SUbgraph-sPEcific FactoR Embedded Normalization (SuperNorm), that explicitly considers the intra-connection information within each node-induced subgraph. To this end, we embed the subgraph-specific factor at the beginning and the end of the standard BatchNorm, as well as incorporate graph instance-specific statistics for improved distinguishable capabilities. In the meantime, we provide theoretical analysis to support that, with the elaborated SuperNorm, an arbitrary GNN is at least as powerful as the 1-WL test in distinguishing non-isomorphism graphs. Furthermore, the proposed SuperNorm scheme is also demonstrated to alleviate the over-smoothing phenomenon. Experimental results related to predictions of graph, node, and link properties on the eight popular datasets demonstrate the effectiveness of the proposed method. The code is available at https://github.com/chenchkx/SuperNorm.
Abstract:In this paper, we strive to develop an interpretable GNNs' inference paradigm, termed MSInterpreter, which can serve as a plug-and-play scheme readily applicable to various GNNs' baselines. Unlike the most existing explanation methods, MSInterpreter provides a Message-passing Selection scheme(MSScheme) to select the critical paths for GNNs' message aggregations, which aims at reaching the self-explaination instead of post-hoc explanations. In detail, the elaborate MSScheme is designed to calculate weight factors of message aggregation paths by considering the vanilla structure and node embedding components, where the structure base aims at weight factors among node-induced substructures; on the other hand, the node embedding base focuses on weight factors via node embeddings obtained by one-layer GNN.Finally, we demonstrate the effectiveness of our approach on graph classification benchmarks.
Abstract:We investigate the problem of online learning with monotone and continuous DR-submodular reward functions, which has received great attention recently. To efficiently handle this problem, especially in the case with complicated decision sets, previous studies have proposed an efficient projection-free algorithm called Mono-Frank-Wolfe (Mono-FW) using $O(T)$ gradient evaluations and linear optimization steps in total. However, it only attains a $(1-1/e)$-regret bound of $O(T^{4/5})$. In this paper, we propose an improved projection-free algorithm, namely POBGA, which reduces the regret bound to $O(T^{3/4})$ while keeping the same computational complexity as Mono-FW. Instead of modifying Mono-FW, our key idea is to make a novel combination of a projection-based algorithm called online boosting gradient ascent, an infeasible projection technique, and a blocking technique. Furthermore, we consider the decentralized setting and develop a variant of POBGA, which not only reduces the current best regret bound of efficient projection-free algorithms for this setting from $O(T^{4/5})$ to $O(T^{3/4})$, but also reduces the total communication complexity from $O(T)$ to $O(\sqrt{T})$.
Abstract:Centralized Training with Decentralized Execution (CTDE) has recently emerged as a popular framework for cooperative Multi-Agent Reinforcement Learning (MARL), where agents can use additional global state information to guide training in a centralized way and make their own decisions only based on decentralized local policies. Despite the encouraging results achieved, CTDE makes an independence assumption on agent policies, which limits agents to adopt global cooperative information from each other during centralized training. Therefore, we argue that existing CTDE methods cannot fully utilize global information for training, leading to an inefficient joint-policy exploration and even suboptimal results. In this paper, we introduce a novel Centralized Advising and Decentralized Pruning (CADP) framework for multi-agent reinforcement learning, that not only enables an efficacious message exchange among agents during training but also guarantees the independent policies for execution. Firstly, CADP endows agents the explicit communication channel to seek and take advices from different agents for more centralized training. To further ensure the decentralized execution, we propose a smooth model pruning mechanism to progressively constraint the agent communication into a closed one without degradation in agent cooperation capability. Empirical evaluations on StarCraft II micromanagement and Google Research Football benchmarks demonstrate that the proposed framework achieves superior performance compared with the state-of-the-art counterparts. Our code will be made publicly available.
Abstract:Online convex optimization (OCO) with arbitrary delays, in which gradients or other information of functions could be arbitrarily delayed, has received increasing attention recently. Different from previous studies that focus on stationary environments, this paper investigates the delayed OCO in non-stationary environments, and aims to minimize the dynamic regret with respect to any sequence of comparators. To this end, we first propose a simple algorithm, namely DOGD, which performs a gradient descent step for each delayed gradient according to their arrival order. Despite its simplicity, our novel analysis shows that DOGD can attain an $O(\sqrt{dT}(P_T+1)$ dynamic regret bound in the worst case, where $d$ is the maximum delay, $T$ is the time horizon, and $P_T$ is the path length of comparators. More importantly, in case delays do not change the arrival order of gradients, it can automatically reduce the dynamic regret to $O(\sqrt{S}(1+P_T))$, where $S$ is the sum of delays. Furthermore, we develop an improved algorithm, which can reduce those dynamic regret bounds achieved by DOGD to $O(\sqrt{dT(P_T+1)})$ and $O(\sqrt{S(1+P_T)})$, respectively. The essential idea is to run multiple DOGD with different learning rates, and utilize a meta-algorithm to track the best one based on their delayed performance. Finally, we demonstrate that our improved algorithm is optimal in both cases by deriving a matching lower bound.
Abstract:A surge of interest has emerged in utilizing Transformers in diverse vision tasks owing to its formidable performance. However, existing approaches primarily focus on optimizing internal model architecture designs that often entail significant trial and error with high burdens. In this work, we propose a new paradigm dubbed Decision Stream Calibration that boosts the performance of general Vision Transformers. To achieve this, we shed light on the information propagation mechanism in the learning procedure by exploring the correlation between different tokens and the relevance coefficient of multiple dimensions. Upon further analysis, it was discovered that 1) the final decision is associated with tokens of foreground targets, while token features of foreground target will be transmitted into the next layer as much as possible, and the useless token features of background area will be eliminated gradually in the forward propagation. 2) Each category is solely associated with specific sparse dimensions in the tokens. Based on the discoveries mentioned above, we designed a two-stage calibration scheme, namely ViT-Calibrator, including token propagation calibration stage and dimension propagation calibration stage. Extensive experiments on commonly used datasets show that the proposed approach can achieve promising results. The source codes are given in the supplements.