Abstract:Reconfigurable intelligent surface (RIS) is emerging as a promising technology for next-generation wireless communication networks, offering a variety of merits such as the ability to tailor the communication environment. Moreover, deploying multiple RISs helps mitigate severe signal blocking between the base station (BS) and users, providing a practical and efficient solution to enhance the service coverage. However, fully reaping the potential of a multi-RIS aided communication system requires solving a non-convex optimization problem. This challenge motivates the adoption of learning-based methods for determining the optimal policy. In this paper, we introduce a novel heterogeneous graph neural network (GNN) to effectively leverage the graph topology of a wireless communication environment. Specifically, we design an association scheme that selects a suitable RIS for each user. Then, we maximize the weighted sum rate (WSR) of all the users by iteratively optimizing the RIS association scheme, and beamforming designs until the considered heterogeneous GNN converges. Based on the proposed approach, each user is associated with the best RIS, which is shown to significantly improve the system capacity in multi-RIS multi-user millimeter wave (mmWave) communications. Specifically, simulation results demonstrate that the proposed heterogeneous GNN closely approaches the performance of the high-complexity alternating optimization (AO) algorithm in the considered multi-RIS aided communication system, and it outperforms other benchmark schemes. Moreover, the performance improvement achieved through the RIS association scheme is shown to be of the order of 30%.
Abstract:Reconfigurable intelligent surface (RIS) is considered as a promising solution for next-generation wireless communication networks due to a variety of merits, e.g., customizing the communication environment. Therefore, deploying multiple RISs helps overcome severe signal blocking between the base station (BS) and users, which is also a practical and effective solution to achieve better service coverage. However, reaping the full benefits of a multi-RISs aided communication system requires solving a non-convex, infinite-dimensional optimization problem, which motivates the use of learning-based methods to configure the optimal policy. This paper adopts a novel heterogeneous graph neural network (GNN) to effectively exploit the graph topology in the wireless communication optimization problem. First, we characterize all communication link features and interference relations in our system with a heterogeneous graph structure. Then, we endeavor to maximize the weighted sum rate (WSR) of all users by jointly optimizing the active beamforming at the BS, the passive beamforming vector of the RIS elements, as well as the RISs association strategy. Unlike most existing work, we consider a more general scenario where the cascaded link for each user is not fixed but dynamically selected by maximizing the WSR. Simulation results show that our proposed heterogeneous GNNs perform about 10 times better than other benchmarks, and a suitable RISs association strategy is also validated to be effective in improving the quality services of users by 30%.