MERL
Abstract:This paper presents a physics-informed neural network (PINN) for modeling first-order Ambisonic (FOA) room impulse responses (RIRs). PINNs have demonstrated promising performance in sound field interpolation by combining the powerful modeling capability of neural networks and the physical principles of sound propagation. In room acoustics, PINNs have typically been trained to represent the sound pressure measured by omnidirectional microphones where the wave equation or its frequency-domain counterpart, i.e., the Helmholtz equation, is leveraged. Meanwhile, FOA RIRs additionally provide spatial characteristics and are useful for immersive audio generation with a wide range of applications. In this paper, we extend the PINN framework to model FOA RIRs. We derive two physics-informed priors for FOA RIRs based on the correspondence between the particle velocity and the (X, Y, Z)-channels of FOA. These priors associate the predicted W-channel and other channels through their partial derivatives and impose the physically feasible relationship on the four channels. Our experiments confirm the effectiveness of the proposed method compared with a neural network without the physics-informed prior.
Abstract:We propose Hierarchical Audio Codec (HAC), a unified neural speech codec that factorizes its bottleneck into three linguistic levels-acoustic, phonetic, and lexical-within a single model. HAC leverages two knowledge distillation objectives: one from a pre-trained speech encoder (HuBERT) for phoneme-level structure, and another from a text-based encoder (LaBSE) for lexical cues. Experiments on English and multilingual data show that HAC's factorized bottleneck yields disentangled token sets: one aligns with phonemes, while another captures word-level semantics. Quantitative evaluations confirm that HAC tokens preserve naturalness and provide interpretable linguistic information, outperforming single-level baselines in both disentanglement and reconstruction quality. These findings underscore HAC's potential as a unified discrete speech representation, bridging acoustic detail and lexical meaning for downstream speech generation and understanding tasks.
Abstract:The characteristics of a sound field are intrinsically linked to the geometric and spatial properties of the environment surrounding a sound source and a listener. The physics of sound propagation is captured in a time-domain signal known as a room impulse response (RIR). Prior work using neural fields (NFs) has allowed learning spatially-continuous representations of RIRs from finite RIR measurements. However, previous NF-based methods have focused on monaural omnidirectional or at most binaural listeners, which does not precisely capture the directional characteristics of a real sound field at a single point. We propose a direction-aware neural field (DANF) that more explicitly incorporates the directional information by Ambisonic-format RIRs. While DANF inherently captures spatial relations between sources and listeners, we further propose a direction-aware loss. In addition, we investigate the ability of DANF to adapt to new rooms in various ways including low-rank adaptation.
Abstract:This report details MERL's system for room impulse response (RIR) estimation submitted to the Generative Data Augmentation Workshop at ICASSP 2025 for Augmenting RIR Data (Task 1) and Improving Speaker Distance Estimation (Task 2). We first pre-train a neural acoustic field conditioned by room geometry on an external large-scale dataset in which pairs of RIRs and the geometries are provided. The neural acoustic field is then adapted to each target room by using the enrollment data, where we leverage either the provided room geometries or geometries retrieved from the external dataset, depending on availability. Lastly, we predict the RIRs for each pair of source and receiver locations specified by Task 1, and use these RIRs to train the speaker distance estimation model in Task 2.
Abstract:When detecting anomalous sounds in complex environments, one of the main difficulties is that trained models must be sensitive to subtle differences in monitored target signals, while many practical applications also require them to be insensitive to changes in acoustic domains. Examples of such domain shifts include changing the type of microphone or the location of acoustic sensors, which can have a much stronger impact on the acoustic signal than subtle anomalies themselves. Moreover, users typically aim to train a model only on source domain data, which they may have a relatively large collection of, and they hope that such a trained model will be able to generalize well to an unseen target domain by providing only a minimal number of samples to characterize the acoustic signals in that domain. In this work, we review and discuss recent publications focusing on this domain generalization problem for anomalous sound detection in the context of the DCASE challenges on acoustic machine condition monitoring.
Abstract:Several attempts have been made to handle multiple source separation tasks such as speech enhancement, speech separation, sound event separation, music source separation (MSS), or cinematic audio source separation (CASS) with a single model. These models are trained on large-scale data including speech, instruments, or sound events and can often successfully separate a wide range of sources. However, it is still challenging for such models to cover all separation tasks because some of them are contradictory (e.g., musical instruments are separated in MSS while they have to be grouped in CASS). To overcome this issue and support all the major separation tasks, we propose a task-aware unified source separation (TUSS) model. The model uses a variable number of learnable prompts to specify which source to separate, and changes its behavior depending on the given prompts, enabling it to handle all the major separation tasks including contradictory ones. Experimental results demonstrate that the proposed TUSS model successfully handles the five major separation tasks mentioned earlier. We also provide some audio examples, including both synthetic mixtures and real recordings, to demonstrate how flexibly the TUSS model changes its behavior at inference depending on the prompts.
Abstract:Time-frequency (TF) domain dual-path models achieve high-fidelity speech separation. While some previous state-of-the-art (SoTA) models rely on RNNs, this reliance means they lack the parallelizability, scalability, and versatility of Transformer blocks. Given the wide-ranging success of pure Transformer-based architectures in other fields, in this work we focus on removing the RNN from TF-domain dual-path models, while maintaining SoTA performance. This work presents TF-Locoformer, a Transformer-based model with LOcal-modeling by COnvolution. The model uses feed-forward networks (FFNs) with convolution layers, instead of linear layers, to capture local information, letting the self-attention focus on capturing global patterns. We place two such FFNs before and after self-attention to enhance the local-modeling capability. We also introduce a novel normalization for TF-domain dual-path models. Experiments on separation and enhancement datasets show that the proposed model meets or exceeds SoTA in multiple benchmarks with an RNN-free architecture.
Abstract:Reverberation as supervision (RAS) is a framework that allows for training monaural speech separation models from multi-channel mixtures in an unsupervised manner. In RAS, models are trained so that sources predicted from a mixture at an input channel can be mapped to reconstruct a mixture at a target channel. However, stable unsupervised training has so far only been achieved in over-determined source-channel conditions, leaving the key determined case unsolved. This work proposes enhanced RAS (ERAS) for solving this problem. Through qualitative analysis, we found that stable training can be achieved by leveraging the loss term to alleviate the frequency-permutation problem. Separation performance is also boosted by adding a novel loss term where separated signals mapped back to their own input mixture are used as pseudo-targets for the signals separated from other channels and mapped to the same channel. Experimental results demonstrate high stability and performance of ERAS.
Abstract:We study the problem of multimodal physical scene understanding, where an embodied agent needs to find fallen objects by inferring object properties, direction, and distance of an impact sound source. Previous works adopt feed-forward neural networks to directly regress the variables from sound, leading to poor generalization and domain adaptation issues. In this paper, we illustrate that learning a disentangled model of acoustic formation, referred to as disentangled acoustic field (DAF), to capture the sound generation and propagation process, enables the embodied agent to construct a spatial uncertainty map over where the objects may have fallen. We demonstrate that our analysis-by-synthesis framework can jointly infer sound properties by explicitly decomposing and factorizing the latent space of the disentangled model. We further show that the spatial uncertainty map can significantly improve the success rate for the localization of fallen objects by proposing multiple plausible exploration locations.
Abstract:Single-channel speech dereverberation aims at extracting a dry speech signal from a recording affected by the acoustic reflections in a room. However, most current deep learning-based approaches for speech dereverberation are not interpretable for room acoustics, and can be considered as black-box systems in that regard. In this work, we address this problem by regularizing the training loss using a novel physical coherence loss which encourages the room impulse response (RIR) induced by the dereverberated output of the model to match the acoustic properties of the room in which the signal was recorded. Our investigation demonstrates the preservation of the original dereverberated signal alongside the provision of a more physically coherent RIR.