Abstract:There has been a growing effort to develop universal speech enhancement (SE) to handle inputs with various speech distortions and recording conditions. The URGENT Challenge series aims to foster such universal SE by embracing a broad range of distortion types, increasing data diversity, and incorporating extensive evaluation metrics. This work introduces the Interspeech 2025 URGENT Challenge, the second edition of the series, to explore several aspects that have received limited attention so far: language dependency, universality for more distortion types, data scalability, and the effectiveness of using noisy training data. We received 32 submissions, where the best system uses a discriminative model, while most other competitive ones are hybrid methods. Analysis reveals some key findings: (i) some generative or hybrid approaches are preferred in subjective evaluations over the top discriminative model, and (ii) purely generative SE models can exhibit language dependency.
Abstract:In music source separation (MSS), obtaining isolated sources or stems is highly costly, making pre-training on unlabeled data a promising approach. Although source-agnostic unsupervised learning like mixture-invariant training (MixIT) has been explored in general sound separation, they have been largely overlooked in MSS due to its implicit assumption of source independence. We hypothesize, however, that the difficulty of applying MixIT to MSS arises from the ill-posed nature of MSS itself, where stem definitions are application-dependent and models lack explicit knowledge of what should or should not be separated, rather than from high inter-source correlation. While MixIT does not assume any source model and struggles with such ambiguities, our preliminary experiments show that it can still separate instruments to some extent, suggesting its potential for unsupervised pre-training. Motivated by these insights, this study investigates MixIT-based pre-training for MSS. We first pre-train a model on in-the-wild, unlabeled data from the Free Music Archive using MixIT, and then fine-tune it on MUSDB18 with supervision. Using the band-split TF-Locoformer, one of the state-of-the-art MSS models, we demonstrate that MixIT-based pre-training improves the performance over training from scratch.
Abstract:In this study, we investigate the impact of positional encoding (PE) on source separation performance and the generalization ability to long sequences (length extrapolation) in Transformer-based time-frequency (TF) domain dual-path models. The length extrapolation capability in TF-domain dual-path models is a crucial factor, as it affects not only their performance on long-duration inputs but also their generalizability to signals with unseen sampling rates. While PE is known to significantly impact length extrapolation, there has been limited research that explores the choice of PEs for TF-domain dual-path models from this perspective. To address this gap, we compare various PE methods using a recent state-of-the-art model, TF-Locoformer, as the base architecture. Our analysis yields the following key findings: (i) When handling sequences that are the same length as or shorter than those seen during training, models with PEs achieve better performance. (ii) However, models without PE exhibit superior length extrapolation. This trend is particularly pronounced when the model contains convolutional layers.
Abstract:Several attempts have been made to handle multiple source separation tasks such as speech enhancement, speech separation, sound event separation, music source separation (MSS), or cinematic audio source separation (CASS) with a single model. These models are trained on large-scale data including speech, instruments, or sound events and can often successfully separate a wide range of sources. However, it is still challenging for such models to cover all separation tasks because some of them are contradictory (e.g., musical instruments are separated in MSS while they have to be grouped in CASS). To overcome this issue and support all the major separation tasks, we propose a task-aware unified source separation (TUSS) model. The model uses a variable number of learnable prompts to specify which source to separate, and changes its behavior depending on the given prompts, enabling it to handle all the major separation tasks including contradictory ones. Experimental results demonstrate that the proposed TUSS model successfully handles the five major separation tasks mentioned earlier. We also provide some audio examples, including both synthetic mixtures and real recordings, to demonstrate how flexibly the TUSS model changes its behavior at inference depending on the prompts.
Abstract:Time-frequency (TF) domain dual-path models achieve high-fidelity speech separation. While some previous state-of-the-art (SoTA) models rely on RNNs, this reliance means they lack the parallelizability, scalability, and versatility of Transformer blocks. Given the wide-ranging success of pure Transformer-based architectures in other fields, in this work we focus on removing the RNN from TF-domain dual-path models, while maintaining SoTA performance. This work presents TF-Locoformer, a Transformer-based model with LOcal-modeling by COnvolution. The model uses feed-forward networks (FFNs) with convolution layers, instead of linear layers, to capture local information, letting the self-attention focus on capturing global patterns. We place two such FFNs before and after self-attention to enhance the local-modeling capability. We also introduce a novel normalization for TF-domain dual-path models. Experiments on separation and enhancement datasets show that the proposed model meets or exceeds SoTA in multiple benchmarks with an RNN-free architecture.
Abstract:Reverberation as supervision (RAS) is a framework that allows for training monaural speech separation models from multi-channel mixtures in an unsupervised manner. In RAS, models are trained so that sources predicted from a mixture at an input channel can be mapped to reconstruct a mixture at a target channel. However, stable unsupervised training has so far only been achieved in over-determined source-channel conditions, leaving the key determined case unsolved. This work proposes enhanced RAS (ERAS) for solving this problem. Through qualitative analysis, we found that stable training can be achieved by leveraging the loss term to alleviate the frequency-permutation problem. Separation performance is also boosted by adding a novel loss term where separated signals mapped back to their own input mixture are used as pseudo-targets for the signals separated from other channels and mapped to the same channel. Experimental results demonstrate high stability and performance of ERAS.
Abstract:The last decade has witnessed significant advancements in deep learning-based speech enhancement (SE). However, most existing SE research has limitations on the coverage of SE sub-tasks, data diversity and amount, and evaluation metrics. To fill this gap and promote research toward universal SE, we establish a new SE challenge, named URGENT, to focus on the universality, robustness, and generalizability of SE. We aim to extend the SE definition to cover different sub-tasks to explore the limits of SE models, starting from denoising, dereverberation, bandwidth extension, and declipping. A novel framework is proposed to unify all these sub-tasks in a single model, allowing the use of all existing SE approaches. We collected public speech and noise data from different domains to construct diverse evaluation data. Finally, we discuss the insights gained from our preliminary baseline experiments based on both generative and discriminative SE methods with 12 curated metrics.
Abstract:Deep learning-based speech enhancement (SE) models have achieved impressive performance in the past decade. Numerous advanced architectures have been designed to deliver state-of-the-art performance; however, their scalability potential remains unrevealed. Meanwhile, the majority of research focuses on small-sized datasets with restricted diversity, leading to a plateau in performance improvement. In this paper, we aim to provide new insights for addressing the above issues by exploring the scalability of SE models in terms of architectures, model sizes, compute budgets, and dataset sizes. Our investigation involves several popular SE architectures and speech data from different domains. Experiments reveal both similarities and distinctions between the scaling effects in SE and other tasks such as speech recognition. These findings further provide insights into the under-explored SE directions, e.g., larger-scale multi-domain corpora and efficiently scalable architectures.
Abstract:We propose a multi-task universal speech enhancement (MUSE) model that can perform five speech enhancement (SE) tasks: dereverberation, denoising, speech separation (SS), target speaker extraction (TSE), and speaker counting. This is achieved by integrating two modules into an SE model: 1) an internal separation module that does both speaker counting and separation; and 2) a TSE module that extracts the target speech from the internal separation outputs using target speaker cues. The model is trained to perform TSE if the target speaker cue is given and SS otherwise. By training the model to remove noise and reverberation, we allow the model to tackle the five tasks mentioned above with a single model, which has not been accomplished yet. Evaluation results demonstrate that the proposed MUSE model can successfully handle multiple tasks with a single model.
Abstract:The past decade has witnessed substantial growth of data-driven speech enhancement (SE) techniques thanks to deep learning. While existing approaches have shown impressive performance in some common datasets, most of them are designed only for a single condition (e.g., single-channel, multi-channel, or a fixed sampling frequency) or only consider a single task (e.g., denoising or dereverberation). Currently, there is no universal SE approach that can effectively handle diverse input conditions with a single model. In this paper, we make the first attempt to investigate this line of research. First, we devise a single SE model that is independent of microphone channels, signal lengths, and sampling frequencies. Second, we design a universal SE benchmark by combining existing public corpora with multiple conditions. Our experiments on a wide range of datasets show that the proposed single model can successfully handle diverse conditions with strong performance.