Abstract:Collaborative reasoning for understanding each image-question pair is very critical but underexplored for an interpretable visual question answering system. Although very recent works also attempted to use explicit compositional processes to assemble multiple subtasks embedded in the questions, their models heavily rely on annotations or handcrafted rules to obtain valid reasoning processes, leading to either heavy workloads or poor performance on composition reasoning. In this paper, to better align image and language domains in diverse and unrestricted cases, we propose a novel neural network model that performs global reasoning on a dependency tree parsed from the question, and we thus phrase our model as parse-tree-guided reasoning network (PTGRN). This network consists of three collaborative modules: i) an attention module to exploit the local visual evidence for each word parsed from the question, ii) a gated residual composition module to compose the previously mined evidence, and iii) a parse-tree-guided propagation module to pass the mined evidence along the parse tree. Our PTGRN is thus capable of building an interpretable VQA system that gradually derives the image cues following a question-driven parse-tree reasoning route. Experiments on relational datasets demonstrate the superiority of our PTGRN over current state-of-the-art VQA methods, and the visualization results highlight the explainable capability of our reasoning system.
Abstract:We consider the single image super-resolution problem in a more general case that the low-/high-resolution pairs and the down-sampling process are unavailable. Different from traditional super-resolution formulation, the low-resolution input is further degraded by noises and blurring. This complicated setting makes supervised learning and accurate kernel estimation impossible. To solve this problem, we resort to unsupervised learning without paired data, inspired by the recent successful image-to-image translation applications. With generative adversarial networks (GAN) as the basic component, we propose a Cycle-in-Cycle network structure to tackle the problem within three steps. First, the noisy and blurry input is mapped to a noise-free low-resolution space. Then the intermediate image is up-sampled with a pre-trained deep model. Finally, we fine-tune the two modules in an end-to-end manner to get the high-resolution output. Experiments on NTIRE2018 datasets demonstrate that the proposed unsupervised method achieves comparable results as the state-of-the-art supervised models.
Abstract:Traffic flow prediction is crucial for urban traffic management and public safety. Its key challenges lie in how to adaptively integrate the various factors that affect the flow changes. In this paper, we propose a unified neural network module to address this problem, called Attentive Crowd Flow Machine~(ACFM), which is able to infer the evolution of the crowd flow by learning dynamic representations of temporally-varying data with an attention mechanism. Specifically, the ACFM is composed of two progressive ConvLSTM units connected with a convolutional layer for spatial weight prediction. The first LSTM takes the sequential flow density representation as input and generates a hidden state at each time-step for attention map inference, while the second LSTM aims at learning the effective spatial-temporal feature expression from attentionally weighted crowd flow features. Based on the ACFM, we further build a deep architecture with the application to citywide crowd flow prediction, which naturally incorporates the sequential and periodic data as well as other external influences. Extensive experiments on two standard benchmarks (i.e., crowd flow in Beijing and New York City) show that the proposed method achieves significant improvements over the state-of-the-art methods.
Abstract:This paper focuses on semantic task planning, i.e., predicting a sequence of actions toward accomplishing a specific task under a certain scene, which is a new problem in computer vision research. The primary challenges are how to model task-specific knowledge and how to integrate this knowledge into the learning procedure. In this work, we propose training a recurrent long short-term memory (LSTM) network to address this problem, i.e., taking a scene image (including pre-located objects) and the specified task as input and recurrently predicting action sequences. However, training such a network generally requires large numbers of annotated samples to cover the semantic space (e.g., diverse action decomposition and ordering). To overcome this issue, we introduce a knowledge and-or graph (AOG) for task description, which hierarchically represents a task as atomic actions. With this AOG representation, we can produce many valid samples (i.e., action sequences according to common sense) by training another auxiliary LSTM network with a small set of annotated samples. Furthermore, these generated samples (i.e., task-oriented action sequences) effectively facilitate training of the model for semantic task planning. In our experiments, we create a new dataset that contains diverse daily tasks and extensively evaluate the effectiveness of our approach.
Abstract:Object categories inherently form a hierarchy with different levels of concept abstraction, especially for fine-grained categories. For example, birds (Aves) can be categorized according to a four-level hierarchy of order, family, genus, and species. This hierarchy encodes rich correlations among various categories across different levels, which can effectively regularize the semantic space and thus make prediction less ambiguous. However, previous studies of fine-grained image recognition primarily focus on categories of one certain level and usually overlook this correlation information. In this work, we investigate simultaneously predicting categories of different levels in the hierarchy and integrating this structured correlation information into the deep neural network by developing a novel Hierarchical Semantic Embedding (HSE) framework. Specifically, the HSE framework sequentially predicts the category score vector of each level in the hierarchy, from highest to lowest. At each level, it incorporates the predicted score vector of the higher level as prior knowledge to learn finer-grained feature representation. During training, the predicted score vector of the higher level is also employed to regularize label prediction by using it as soft targets of corresponding sub-categories. To evaluate the proposed framework, we organize the 200 bird species of the Caltech-UCSD birds dataset with the four-level category hierarchy and construct a large-scale butterfly dataset that also covers four level categories. Extensive experiments on these two and the newly-released VegFru datasets demonstrate the superiority of our HSE framework over the baseline methods and existing competitors.
Abstract:Beyond the existing single-person and multiple-person human parsing tasks in static images, this paper makes the first attempt to investigate a more realistic video instance-level human parsing that simultaneously segments out each person instance and parses each instance into more fine-grained parts (e.g., head, leg, dress). We introduce a novel Adaptive Temporal Encoding Network (ATEN) that alternatively performs temporal encoding among key frames and flow-guided feature propagation from other consecutive frames between two key frames. Specifically, ATEN first incorporates a Parsing-RCNN to produce the instance-level parsing result for each key frame, which integrates both the global human parsing and instance-level human segmentation into a unified model. To balance between accuracy and efficiency, the flow-guided feature propagation is used to directly parse consecutive frames according to their identified temporal consistency with key frames. On the other hand, ATEN leverages the convolution gated recurrent units (convGRU) to exploit temporal changes over a series of key frames, which are further used to facilitate the frame-level instance-level parsing. By alternatively performing direct feature propagation between consistent frames and temporal encoding network among key frames, our ATEN achieves a good balance between frame-level accuracy and time efficiency, which is a common crucial problem in video object segmentation research. To demonstrate the superiority of our ATEN, extensive experiments are conducted on the most popular video segmentation benchmark (DAVIS) and a newly collected Video Instance-level Parsing (VIP) dataset, which is the first video instance-level human parsing dataset comprised of 404 sequences and over 20k frames with instance-level and pixel-wise annotations.
Abstract:Single image rain streaks removal has recently witnessed substantial progress due to the development of deep convolutional neural networks. However, existing deep learning based methods either focus on the entrance and exit of the network by decomposing the input image into high and low frequency information and employing residual learning to reduce the mapping range, or focus on the introduction of cascaded learning scheme to decompose the task of rain streaks removal into multi-stages. These methods treat the convolutional neural network as an encapsulated end-to-end mapping module without deepening into the rationality and superiority of neural network design. In this paper, we delve into an effective end-to-end neural network structure for stronger feature expression and spatial correlation learning. Specifically, we propose a non-locally enhanced encoder-decoder network framework, which consists of a pooling indices embedded encoder-decoder network to efficiently learn increasingly abstract feature representation for more accurate rain streaks modeling while perfectly preserving the image detail. The proposed encoder-decoder framework is composed of a series of non-locally enhanced dense blocks that are designed to not only fully exploit hierarchical features from all the convolutional layers but also well capture the long-distance dependencies and structural information. Extensive experiments on synthetic and real datasets demonstrate that the proposed method can effectively remove rain-streaks on rainy image of various densities while well preserving the image details, which achieves significant improvements over the recent state-of-the-art methods.
Abstract:Instance-level human parsing towards real-world human analysis scenarios is still under-explored due to the absence of sufficient data resources and technical difficulty in parsing multiple instances in a single pass. Several related works all follow the "parsing-by-detection" pipeline that heavily relies on separately trained detection models to localize instances and then performs human parsing for each instance sequentially. Nonetheless, two discrepant optimization targets of detection and parsing lead to suboptimal representation learning and error accumulation for final results. In this work, we make the first attempt to explore a detection-free Part Grouping Network (PGN) for efficiently parsing multiple people in an image in a single pass. Our PGN reformulates instance-level human parsing as two twinned sub-tasks that can be jointly learned and mutually refined via a unified network: 1) semantic part segmentation for assigning each pixel as a human part (e.g., face, arms); 2) instance-aware edge detection to group semantic parts into distinct person instances. Thus the shared intermediate representation would be endowed with capabilities in both characterizing fine-grained parts and inferring instance belongings of each part. Finally, a simple instance partition process is employed to get final results during inference. We conducted experiments on PASCAL-Person-Part dataset and our PGN outperforms all state-of-the-art methods. Furthermore, we show its superiority on a newly collected multi-person parsing dataset (CIHP) including 38,280 diverse images, which is the largest dataset so far and can facilitate more advanced human analysis. The CIHP benchmark and our source code are available at http://sysu-hcp.net/lip/.
Abstract:To avoid the exhaustive search over locations and scales, current state-of-the-art object detection systems usually involve a crucial component generating a batch of candidate object proposals from images. In this paper, we present a simple yet effective approach for segmenting object proposals via a deep architecture of recursive neural networks (ReNNs), which hierarchically groups regions for detecting object candidates over scales. Unlike traditional methods that mainly adopt fixed similarity measures for merging regions or finding object proposals, our approach adaptively learns the region merging similarity and the objectness measure during the process of hierarchical region grouping. Specifically, guided by a structured loss, the ReNN model jointly optimizes the cross-region similarity metric with the region merging process as well as the objectness prediction. During inference of the object proposal generation, we introduce randomness into the greedy search to cope with the ambiguity of grouping regions. Extensive experiments on standard benchmarks, e.g., PASCAL VOC and ImageNet, suggest that our approach is capable of producing object proposals with high recall while well preserving the object boundaries and outperforms other existing methods in both accuracy and efficiency.
Abstract:Video person re-identification attracts much attention in recent years. It aims to match image sequences of pedestrians from different camera views. Previous approaches usually improve this task from three aspects, including a) selecting more discriminative frames, b) generating more informative temporal representations, and c) developing more effective distance metrics. To address the above issues, we present a novel and practical deep architecture for video person re-identification termed Self-and-Collaborative Attention Network (SCAN). It has several appealing properties. First, SCAN adopts non-parametric attention mechanism to refine the intra-sequence and inter-sequence feature representation of videos, and outputs self-and-collaborative feature representation for each video, making the discriminative frames aligned between the probe and gallery sequences.Second, beyond existing models, a generalized pairwise similarity measurement is proposed to calculate the similarity feature representations of video pairs, enabling computing the matching scores by the binary classifier. Third, a dense clip segmentation strategy is also introduced to generate rich probe-gallery pairs to optimize the model. Extensive experiments demonstrate the effectiveness of SCAN, which outperforms top-1 accuracies of the best-performing baselines by 7.8%, 2.1% and 4.9% on iLIDS-VID, PRID2011 and MARS dataset, respectively.