Abstract:Molecular representation learning, a cornerstone for downstream tasks like molecular captioning and molecular property prediction, heavily relies on Graph Neural Networks (GNN). However, GNN suffers from the over-smoothing problem, where node-level features collapse in deep GNN layers. While existing feature projection methods with cross-attention have been introduced to mitigate this issue, they still perform poorly in deep features. This motivated our exploration of using Mamba as an alternative projector for its ability to handle complex sequences. However, we observe that while Mamba excels at preserving global topological information from deep layers, it neglects fine-grained details in shallow layers. The capabilities of Mamba and cross-attention exhibit a global-local trade-off. To resolve this critical global-local trade-off, we propose Hierarchical and Structure-Aware Network (HSA-Net), a novel framework with two modules that enables a hierarchical feature projection and fusion. Firstly, a Hierarchical Adaptive Projector (HAP) module is introduced to process features from different graph layers. It learns to dynamically switch between a cross-attention projector for shallow layers and a structure-aware Graph-Mamba projector for deep layers, producing high-quality, multi-level features. Secondly, to adaptively merge these multi-level features, we design a Source-Aware Fusion (SAF) module, which flexibly selects fusion experts based on the characteristics of the aggregation features, ensuring a precise and effective final representation fusion. Extensive experiments demonstrate that our HSA-Net framework quantitatively and qualitatively outperforms current state-of-the-art (SOTA) methods.
Abstract:This paper presents the \textbf{S}emantic-a\textbf{W}ar\textbf{E} spatial-t\textbf{E}mporal \textbf{T}okenizer (SweetTokenizer), a compact yet effective discretization approach for vision data. Our goal is to boost tokenizers' compression ratio while maintaining reconstruction fidelity in the VQ-VAE paradigm. Firstly, to obtain compact latent representations, we decouple images or videos into spatial-temporal dimensions, translating visual information into learnable querying spatial and temporal tokens through a \textbf{C}ross-attention \textbf{Q}uery \textbf{A}uto\textbf{E}ncoder (CQAE). Secondly, to complement visual information during compression, we quantize these tokens via a specialized codebook derived from off-the-shelf LLM embeddings to leverage the rich semantics from language modality. Finally, to enhance training stability and convergence, we also introduce a curriculum learning strategy, which proves critical for effective discrete visual representation learning. SweetTokenizer achieves comparable video reconstruction fidelity with only \textbf{25\%} of the tokens used in previous state-of-the-art video tokenizers, and boost video generation results by \textbf{32.9\%} w.r.t gFVD. When using the same token number, we significantly improves video and image reconstruction results by \textbf{57.1\%} w.r.t rFVD on UCF-101 and \textbf{37.2\%} w.r.t rFID on ImageNet-1K. Additionally, the compressed tokens are imbued with semantic information, enabling few-shot recognition capabilities powered by LLMs in downstream applications.