Abstract:With the rapid advancement of generative models, powerful image editing methods now enable diverse and highly realistic image manipulations that far surpass traditional deepfake techniques, posing new challenges for manipulation detection. Existing image manipulation detection and localization (IMDL) benchmarks suffer from limited content diversity, narrow generative-model coverage, and insufficient interpretability, which hinders the generalization and explanation capabilities of current manipulation detection methods. To address these limitations, we introduce \textbf{ManipBench}, a large-scale benchmark for image manipulation detection and localization focusing on AI-edited images. ManipBench contains over 450K manipulated images produced by 25 state-of-the-art image editing models across 12 manipulation categories, among which 100K images are further annotated with bounding boxes, judgment cues, and textual explanations to support interpretable detection. Building upon ManipBench, we propose \textbf{ManipShield}, an all-in-one model based on a Multimodal Large Language Model (MLLM) that leverages contrastive LoRA fine-tuning and task-specific decoders to achieve unified image manipulation detection, localization, and explanation. Extensive experiments on ManipBench and several public datasets demonstrate that ManipShield achieves state-of-the-art performance and exhibits strong generality to unseen manipulation models. Both ManipBench and ManipShield will be released upon publication.
Abstract:Understanding how well large language models can follow users' instructions throughout a dialogue spanning multiple topics is of great importance for data-intensive conversational applications. Existing benchmarks are often limited to a fixed number of turns, making them susceptible to saturation and failing to account for the user's interactive experience. In this work, we propose an extensible framework for assessing multi-turn instruction-following ability. At its core, our framework decouples linguistic surface forms from user intent simulation through a three-layer mechanism that tracks constraints, instructions, and topics. This framework mimics User-LLM interaction by enabling the dynamic construction of benchmarks with state changes and tracebacks, terminating a conversation only when the model exhausts a simulated user's patience. We define a suite of metrics capturing the quality of the interaction process. Using this framework, we construct EvolIF, an evolving instruction-following benchmark incorporating nine distinct constraint types. Our results indicate that GPT-5 exhibits superior instruction-following performance. It sustains an average of 18.54 conversational turns and demonstrates 70.31% robustness, outperforming Gemini-2.5-Pro by a significant margin of 11.41%, while other models lag far behind. All of the data and code will be made publicly available online.
Abstract:Evaluating the abilities of large models and manifesting their gaps are challenging. Current benchmarks adopt either ground-truth-based score-form evaluation on static datasets or indistinct textual chatbot-style human preferences collection, which may not provide users with immediate, intuitive, and perceptible feedback on performance differences. In this paper, we introduce BioMotion Arena, a novel framework for evaluating large language models (LLMs) and multimodal large language models (MLLMs) via visual animation. Our methodology draws inspiration from the inherent visual perception of motion patterns characteristic of living organisms that utilizes point-light source imaging to amplify the performance discrepancies between models. Specifically, we employ a pairwise comparison evaluation and collect more than 45k votes for 53 mainstream LLMs and MLLMs on 90 biological motion variants. Data analyses show that the crowd-sourced human votes are in good agreement with those of expert raters, demonstrating the superiority of our BioMotion Arena in offering discriminative feedback. We also find that over 90\% of evaluated models, including the cutting-edge open-source InternVL3 and proprietary Claude-4 series, fail to produce fundamental humanoid point-light groups, much less smooth and biologically plausible motions. This enables BioMotion Arena to serve as a challenging benchmark for performance visualization and a flexible evaluation framework without restrictions on ground-truth.
Abstract:Video quality assessment (VQA) is essential for quantifying perceptual quality in various video processing workflows, spanning from camera capture systems to over-the-top streaming platforms. While recent supervised VQA models have made substantial progress, the reliance on manually annotated datasets -- a process that is labor-intensive, costly, and difficult to scale up -- has hindered further optimization of their generalization to unseen video content and distortions. To bridge this gap, we introduce a self-supervised learning framework for VQA to learn quality assessment capabilities from large-scale, unlabeled web videos. Our approach leverages a \textbf{learning-to-rank} paradigm to train a large multimodal model (LMM) on video pairs automatically labeled via two manners, including quality pseudo-labeling by existing VQA models and relative quality ranking based on synthetic distortion simulations. Furthermore, we introduce a novel \textbf{iterative self-improvement training strategy}, where the trained model acts an improved annotator to iteratively refine the annotation quality of training data. By training on a dataset $10\times$ larger than the existing VQA benchmarks, our model: (1) achieves zero-shot performance on in-domain VQA benchmarks that matches or surpasses supervised models; (2) demonstrates superior out-of-distribution (OOD) generalization across diverse video content and distortions; and (3) sets a new state-of-the-art when fine-tuned on human-labeled datasets. Extensive experimental results validate the effectiveness of our self-supervised approach in training generalized VQA models. The datasets and code will be publicly released to facilitate future research.
Abstract:Mesh saliency enhances the adaptability of 3D vision by identifying and emphasizing regions that naturally attract visual attention. To investigate the interaction between geometric structure and texture in shaping visual attention, we establish a comprehensive mesh saliency dataset, which is the first to systematically capture the differences in saliency distribution under both textured and non-textured visual conditions. Furthermore, we introduce mesh Mamba, a unified saliency prediction model based on a state space model (SSM), designed to adapt across various mesh types. Mesh Mamba effectively analyzes the geometric structure of the mesh while seamlessly incorporating texture features into the topological framework, ensuring coherence throughout appearance-enhanced modeling. More importantly, by subgraph embedding and a bidirectional SSM, the model enables global context modeling for both local geometry and texture, preserving the topological structure and improving the understanding of visual details and structural complexity. Through extensive theoretical and empirical validation, our model not only improves performance across various mesh types but also demonstrates high scalability and versatility, particularly through cross validations of various visual features.




Abstract:Textured meshes significantly enhance the realism and detail of objects by mapping intricate texture details onto the geometric structure of 3D models. This advancement is valuable across various applications, including entertainment, education, and industry. While traditional mesh saliency studies focus on non-textured meshes, our work explores the complexities introduced by detailed texture patterns. We present a new dataset for textured mesh saliency, created through an innovative eye-tracking experiment in a six degrees of freedom (6-DOF) VR environment. This dataset addresses the limitations of previous studies by providing comprehensive eye-tracking data from multiple viewpoints, thereby advancing our understanding of human visual behavior and supporting more accurate and effective 3D content creation. Our proposed model predicts saliency maps for textured mesh surfaces by treating each triangular face as an individual unit and assigning a saliency density value to reflect the importance of each local surface region. The model incorporates a texture alignment module and a geometric extraction module, combined with an aggregation module to integrate texture and geometry for precise saliency prediction. We believe this approach will enhance the visual fidelity of geometric processing algorithms while ensuring efficient use of computational resources, which is crucial for real-time rendering and high-detail applications such as VR and gaming.




Abstract:Understanding and predicting viewer attention in omnidirectional videos (ODVs) is crucial for enhancing user engagement in virtual and augmented reality applications. Although both audio and visual modalities are essential for saliency prediction in ODVs, the joint exploitation of these two modalities has been limited, primarily due to the absence of large-scale audio-visual saliency databases and comprehensive analyses. This paper comprehensively investigates audio-visual attention in ODVs from both subjective and objective perspectives. Specifically, we first introduce a new audio-visual saliency database for omnidirectional videos, termed AVS-ODV database, containing 162 ODVs and corresponding eye movement data collected from 60 subjects under three audio modes including mute, mono, and ambisonics. Based on the constructed AVS-ODV database, we perform an in-depth analysis of how audio influences visual attention in ODVs. To advance the research on audio-visual saliency prediction for ODVs, we further establish a new benchmark based on the AVS-ODV database by testing numerous state-of-the-art saliency models, including visual-only models and audio-visual models. In addition, given the limitations of current models, we propose an innovative omnidirectional audio-visual saliency prediction network (OmniAVS), which is built based on the U-Net architecture, and hierarchically fuses audio and visual features from the multimodal aligned embedding space. Extensive experimental results demonstrate that the proposed OmniAVS model outperforms other state-of-the-art models on both ODV AVS prediction and traditional AVS predcition tasks. The AVS-ODV database and OmniAVS model will be released to facilitate future research.




Abstract:The integration of deep learning, particularly AI-Generated Content, with high-quality data derived from ab initio calculations has emerged as a promising avenue for transforming the landscape of scientific research. However, the challenge of designing molecular drugs or materials that incorporate multi-modality prior knowledge remains a critical and complex undertaking. Specifically, achieving a practical molecular design necessitates not only meeting the diversity requirements but also addressing structural and textural constraints with various symmetries outlined by domain experts. In this article, we present an innovative approach to tackle this inverse design problem by formulating it as a multi-modality guidance generation/optimization task. Our proposed solution involves a textural-structure alignment symmetric diffusion framework for the implementation of molecular generation/optimization tasks, namely 3DToMolo. 3DToMolo aims to harmonize diverse modalities, aligning them seamlessly to produce molecular structures adhere to specified symmetric structural and textural constraints by experts in the field. Experimental trials across three guidance generation settings have shown a superior hit generation performance compared to state-of-the-art methodologies. Moreover, 3DToMolo demonstrates the capability to generate novel molecules, incorporating specified target substructures, without the need for prior knowledge. This work not only holds general significance for the advancement of deep learning methodologies but also paves the way for a transformative shift in molecular design strategies. 3DToMolo creates opportunities for a more nuanced and effective exploration of the vast chemical space, opening new frontiers in the development of molecular entities with tailored properties and functionalities.
Abstract:With the rapid evolution of the Text-to-Image (T2I) model in recent years, their unsatisfactory generation result has become a challenge. However, uniformly refining AI-Generated Images (AIGIs) of different qualities not only limited optimization capabilities for low-quality AIGIs but also brought negative optimization to high-quality AIGIs. To address this issue, a quality-award refiner named Q-Refine is proposed. Based on the preference of the Human Visual System (HVS), Q-Refine uses the Image Quality Assessment (IQA) metric to guide the refining process for the first time, and modify images of different qualities through three adaptive pipelines. Experimental shows that for mainstream T2I models, Q-Refine can perform effective optimization to AIGIs of different qualities. It can be a general refiner to optimize AIGIs from both fidelity and aesthetic quality levels, thus expanding the application of the T2I generation models.
Abstract:Visual saliency prediction for omnidirectional videos (ODVs) has shown great significance and necessity for omnidirectional videos to help ODV coding, ODV transmission, ODV rendering, etc.. However, most studies only consider visual information for ODV saliency prediction while audio is rarely considered despite its significant influence on the viewing behavior of ODV. This is mainly due to the lack of large-scale audio-visual ODV datasets and corresponding analysis. Thus, in this paper, we first establish the largest audio-visual saliency dataset for omnidirectional videos (AVS-ODV), which comprises the omnidirectional videos, audios, and corresponding captured eye-tracking data for three video sound modalities including mute, mono, and ambisonics. Then we analyze the visual attention behavior of the observers under various omnidirectional audio modalities and visual scenes based on the AVS-ODV dataset. Furthermore, we compare the performance of several state-of-the-art saliency prediction models on the AVS-ODV dataset and construct a new benchmark. Our AVS-ODV datasets and the benchmark will be released to facilitate future research.