Federated learning (FL) supports training models on geographically distributed devices. However, traditional FL systems adopt a centralized synchronous strategy, putting high communication pressure and model generalization challenge. Existing optimizations on FL either fail to speedup training on heterogeneous devices or suffer from poor communication efficiency. In this paper, we propose HADFL, a framework that supports decentralized asynchronous training on heterogeneous devices. The devices train model locally with heterogeneity-aware local steps using local data. In each aggregation cycle, they are selected based on probability to perform model synchronization and aggregation. Compared with the traditional FL system, HADFL can relieve the central server's communication pressure, efficiently utilize heterogeneous computing power, and can achieve a maximum speedup of 3.15x than decentralized-FedAvg and 4.68x than Pytorch distributed training scheme, respectively, with almost no loss of convergence accuracy.
Currently, almost all the multi-track music generation models use the Convolutional Neural Network (CNN) to build the generative model, while the Recurrent Neural Network (RNN) based models can not be applied in this task. In view of the above problem, this paper proposes a RNN-based Hierarchical Multi-modal Fusion Generation Variational Autoencoder (VAE) network, MIDI-Sandwich2, for multi-track symbolic music generation. Inspired by VQ-VAE2, MIDI-Sandwich2 expands the dimension of the original hierarchical model by using multiple independent Binary Variational Autoencoder (BVAE) models without sharing weights to process the information of each track. Then, with multi-modal fusion technology, the upper layer named Multi-modal Fusion Generation VAE (MFG-VAE) combines the latent space vectors generated by the respective tracks, and uses the decoder to perform the ascending dimension reconstruction to simulate the inverse operation of multi-modal fusion, multi-modal generation, so as to realize the RNN-based multi-track symbolic music generation. For the multi-track format pianoroll, we also improve the output binarization method of MuseGAN, which solves the problem that the refinement step of the original scheme is difficult to differentiate and the gradient is hard to descent, making the generated song more expressive. The model is validated on the Lakh Pianoroll Dataset (LPD) multi-track dataset. Compared to the MuseGAN, MIDI-Sandwich2 can not only generate harmonious multi-track music, the generation quality is also close to the state of the art level. At the same time, by using the VAE to restore songs, the semi-generated songs reproduced by the MIDI-Sandwich2 are more beautiful than the pure autogeneration music generated by MuseGAN. Both the code and the audition audio samples are open source on https://github.com/LiangHsia/MIDI-S2.
Identifying changes in the generative process of sequential data, known as changepoint detection, has become an increasingly important topic for a wide variety of fields. A recently developed approach, which we call EXact Online Bayesian Changepoint Detection (EXO), has shown reasonable results with efficient computation for real time updates. The method is based on a \textit{forward} recursive message-passing algorithm. However, the detected changepoints from these methods are unstable. We propose a new algorithm called Lagged EXact Online Bayesian Changepoint Detection (LEXO) that improves the accuracy and stability of the detection by incorporating $\ell$-time lags to the inference. The new algorithm adds a recursive \textit{backward} step to the forward EXO and has computational complexity linear in the number of added lags. Estimation of parameters associated with regimes is also developed. Simulation studies with three common changepoint models show that the detected changepoints from LEXO are much more stable and parameter estimates from LEXO have considerably lower MSE than EXO. We illustrate applicability of the methods with two real world data examples comparing the EXO and LEXO.