Despite increasing interest in the field of Interpretable Machine Learning (IML), a significant gap persists between the technical objectives targeted by researchers' methods and the high-level goals of consumers' use cases. In this work, we synthesize foundational work on IML methods and evaluation into an actionable taxonomy. This taxonomy serves as a tool to conceptualize the gap between researchers and consumers, illustrated by the lack of connections between its methods and use cases components. It also provides the foundation from which we describe a three-step workflow to better enable researchers and consumers to work together to discover what types of methods are useful for what use cases. Eventually, by building on the results generated from this workflow, a more complete version of the taxonomy will increasingly allow consumers to find relevant methods for their target use cases and researchers to identify applicable use cases for their proposed methods.
In this paper, we explore connections between interpretable machine learning and learning theory through the lens of local approximation explanations. First, we tackle the traditional problem of performance generalization and bound the test-time accuracy of a model using a notion of how locally explainable it is. Second, we explore the novel problem of explanation generalization which is an important concern for a growing class of finite sample-based local approximation explanations. Finally, we validate our theoretical results empirically and show that they reflect what can be seen in practice.
Parameter-transfer is a well-known and versatile approach for meta-learning, with applications including few-shot learning, federated learning, and reinforcement learning. However, parameter-transfer algorithms often require sharing models that have been trained on the samples from specific tasks, thus leaving the task-owners susceptible to breaches of privacy. We conduct the first formal study of privacy in this setting and formalize the notion of task-global differential privacy as a practical relaxation of more commonly studied threat models. We then propose a new differentially private algorithm for gradient-based parameter transfer that not only satisfies this privacy requirement but also retains provable transfer learning guarantees in convex settings. Empirically, we apply our analysis to the problem of federated learning with personalization and show that allowing the relaxation to task-global privacy from the more commonly studied notion of local privacy leads to dramatically increased performance in recurrent neural language modeling.