Alert button
Picture for Igor Babuschkin

Igor Babuschkin

Alert button

AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning

Aug 07, 2023
Michaël Mathieu, Sherjil Ozair, Srivatsan Srinivasan, Caglar Gulcehre, Shangtong Zhang, Ray Jiang, Tom Le Paine, Richard Powell, Konrad Żołna, Julian Schrittwieser, David Choi, Petko Georgiev, Daniel Toyama, Aja Huang, Roman Ring, Igor Babuschkin, Timo Ewalds, Mahyar Bordbar, Sarah Henderson, Sergio Gómez Colmenarejo, Aäron van den Oord, Wojciech Marian Czarnecki, Nando de Freitas, Oriol Vinyals

Figure 1 for AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning
Figure 2 for AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning
Figure 3 for AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning
Figure 4 for AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning

StarCraft II is one of the most challenging simulated reinforcement learning environments; it is partially observable, stochastic, multi-agent, and mastering StarCraft II requires strategic planning over long time horizons with real-time low-level execution. It also has an active professional competitive scene. StarCraft II is uniquely suited for advancing offline RL algorithms, both because of its challenging nature and because Blizzard has released a massive dataset of millions of StarCraft II games played by human players. This paper leverages that and establishes a benchmark, called AlphaStar Unplugged, introducing unprecedented challenges for offline reinforcement learning. We define a dataset (a subset of Blizzard's release), tools standardizing an API for machine learning methods, and an evaluation protocol. We also present baseline agents, including behavior cloning, offline variants of actor-critic and MuZero. We improve the state of the art of agents using only offline data, and we achieve 90% win rate against previously published AlphaStar behavior cloning agent.

* 32 pages, 13 figures, previous version published as a NeurIPS 2021 workshop: https://openreview.net/forum?id=Np8Pumfoty 
Viaarxiv icon

Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer

Mar 28, 2022
Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder, Jakub Pachocki, Weizhu Chen, Jianfeng Gao

Figure 1 for Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer
Figure 2 for Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer
Figure 3 for Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer
Figure 4 for Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer

Hyperparameter (HP) tuning in deep learning is an expensive process, prohibitively so for neural networks (NNs) with billions of parameters. We show that, in the recently discovered Maximal Update Parametrization (muP), many optimal HPs remain stable even as model size changes. This leads to a new HP tuning paradigm we call muTransfer: parametrize the target model in muP, tune the HP indirectly on a smaller model, and zero-shot transfer them to the full-sized model, i.e., without directly tuning the latter at all. We verify muTransfer on Transformer and ResNet. For example, 1) by transferring pretraining HPs from a model of 13M parameters, we outperform published numbers of BERT-large (350M parameters), with a total tuning cost equivalent to pretraining BERT-large once; 2) by transferring from 40M parameters, we outperform published numbers of the 6.7B GPT-3 model, with tuning cost only 7% of total pretraining cost. A Pytorch implementation of our technique can be found at github.com/microsoft/mup and installable via `pip install mup`.

* NeurIPS 2021 
Viaarxiv icon

Formal Mathematics Statement Curriculum Learning

Feb 03, 2022
Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, Ilya Sutskever

Figure 1 for Formal Mathematics Statement Curriculum Learning
Figure 2 for Formal Mathematics Statement Curriculum Learning
Figure 3 for Formal Mathematics Statement Curriculum Learning
Figure 4 for Formal Mathematics Statement Curriculum Learning

We explore the use of expert iteration in the context of language modeling applied to formal mathematics. We show that at same compute budget, expert iteration, by which we mean proof search interleaved with learning, dramatically outperforms proof search only. We also observe that when applied to a collection of formal statements of sufficiently varied difficulty, expert iteration is capable of finding and solving a curriculum of increasingly difficult problems, without the need for associated ground-truth proofs. Finally, by applying this expert iteration to a manually curated set of problem statements, we achieve state-of-the-art on the miniF2F benchmark, automatically solving multiple challenging problems drawn from high school olympiads.

Viaarxiv icon

Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Jan 06, 2022
Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, Vedant Misra

Figure 1 for Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
Figure 2 for Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
Figure 3 for Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
Figure 4 for Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

In this paper we propose to study generalization of neural networks on small algorithmically generated datasets. In this setting, questions about data efficiency, memorization, generalization, and speed of learning can be studied in great detail. In some situations we show that neural networks learn through a process of "grokking" a pattern in the data, improving generalization performance from random chance level to perfect generalization, and that this improvement in generalization can happen well past the point of overfitting. We also study generalization as a function of dataset size and find that smaller datasets require increasing amounts of optimization for generalization. We argue that these datasets provide a fertile ground for studying a poorly understood aspect of deep learning: generalization of overparametrized neural networks beyond memorization of the finite training dataset.

* Correspondence to alethea@openai.com. Code available at: https://github.com/openai/grok 
Viaarxiv icon

Scaling Language Models: Methods, Analysis & Insights from Training Gopher

Dec 08, 2021
Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu, Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d'Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger, Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu, Geoffrey Irving

Figure 1 for Scaling Language Models: Methods, Analysis & Insights from Training Gopher
Figure 2 for Scaling Language Models: Methods, Analysis & Insights from Training Gopher
Figure 3 for Scaling Language Models: Methods, Analysis & Insights from Training Gopher
Figure 4 for Scaling Language Models: Methods, Analysis & Insights from Training Gopher

Language modelling provides a step towards intelligent communication systems by harnessing large repositories of written human knowledge to better predict and understand the world. In this paper, we present an analysis of Transformer-based language model performance across a wide range of model scales -- from models with tens of millions of parameters up to a 280 billion parameter model called Gopher. These models are evaluated on 152 diverse tasks, achieving state-of-the-art performance across the majority. Gains from scale are largest in areas such as reading comprehension, fact-checking, and the identification of toxic language, but logical and mathematical reasoning see less benefit. We provide a holistic analysis of the training dataset and model's behaviour, covering the intersection of model scale with bias and toxicity. Finally we discuss the application of language models to AI safety and the mitigation of downstream harms.

* 118 pages 
Viaarxiv icon

Unsupervised Neural Machine Translation with Generative Language Models Only

Oct 11, 2021
Jesse Michael Han, Igor Babuschkin, Harrison Edwards, Arvind Neelakantan, Tao Xu, Stanislas Polu, Alex Ray, Pranav Shyam, Aditya Ramesh, Alec Radford, Ilya Sutskever

Figure 1 for Unsupervised Neural Machine Translation with Generative Language Models Only
Figure 2 for Unsupervised Neural Machine Translation with Generative Language Models Only
Figure 3 for Unsupervised Neural Machine Translation with Generative Language Models Only
Figure 4 for Unsupervised Neural Machine Translation with Generative Language Models Only

We show how to derive state-of-the-art unsupervised neural machine translation systems from generatively pre-trained language models. Our method consists of three steps: few-shot amplification, distillation, and backtranslation. We first use the zero-shot translation ability of large pre-trained language models to generate translations for a small set of unlabeled sentences. We then amplify these zero-shot translations by using them as few-shot demonstrations for sampling a larger synthetic dataset. This dataset is distilled by discarding the few-shot demonstrations and then fine-tuning. During backtranslation, we repeatedly generate translations for a set of inputs and then fine-tune a single language model on both directions of the translation task at once, ensuring cycle-consistency by swapping the roles of gold monotext and generated translations when fine-tuning. By using our method to leverage GPT-3's zero-shot translation capability, we achieve a new state-of-the-art in unsupervised translation on the WMT14 English-French benchmark, attaining a BLEU score of 42.1.

* 10 pages 
Viaarxiv icon

Evaluating Large Language Models Trained on Code

Jul 14, 2021
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, Wojciech Zaremba

Figure 1 for Evaluating Large Language Models Trained on Code
Figure 2 for Evaluating Large Language Models Trained on Code
Figure 3 for Evaluating Large Language Models Trained on Code
Figure 4 for Evaluating Large Language Models Trained on Code

We introduce Codex, a GPT language model fine-tuned on publicly available code from GitHub, and study its Python code-writing capabilities. A distinct production version of Codex powers GitHub Copilot. On HumanEval, a new evaluation set we release to measure functional correctness for synthesizing programs from docstrings, our model solves 28.8% of the problems, while GPT-3 solves 0% and GPT-J solves 11.4%. Furthermore, we find that repeated sampling from the model is a surprisingly effective strategy for producing working solutions to difficult prompts. Using this method, we solve 70.2% of our problems with 100 samples per problem. Careful investigation of our model reveals its limitations, including difficulty with docstrings describing long chains of operations and with binding operations to variables. Finally, we discuss the potential broader impacts of deploying powerful code generation technologies, covering safety, security, and economics.

* corrected typos, added references, added authors, added acknowledgements 
Viaarxiv icon

Unsupervised Doodling and Painting with Improved SPIRAL

Oct 02, 2019
John F. J. Mellor, Eunbyung Park, Yaroslav Ganin, Igor Babuschkin, Tejas Kulkarni, Dan Rosenbaum, Andy Ballard, Theophane Weber, Oriol Vinyals, S. M. Ali Eslami

Figure 1 for Unsupervised Doodling and Painting with Improved SPIRAL
Figure 2 for Unsupervised Doodling and Painting with Improved SPIRAL
Figure 3 for Unsupervised Doodling and Painting with Improved SPIRAL
Figure 4 for Unsupervised Doodling and Painting with Improved SPIRAL

We investigate using reinforcement learning agents as generative models of images (extending arXiv:1804.01118). A generative agent controls a simulated painting environment, and is trained with rewards provided by a discriminator network simultaneously trained to assess the realism of the agent's samples, either unconditional or reconstructions. Compared to prior work, we make a number of improvements to the architectures of the agents and discriminators that lead to intriguing and at times surprising results. We find that when sufficiently constrained, generative agents can learn to produce images with a degree of visual abstraction, despite having only ever seen real photographs (no human brush strokes). And given enough time with the painting environment, they can produce images with considerable realism. These results show that, under the right circumstances, some aspects of human drawing can emerge from simulated embodiment, without the need for external supervision, imitation or social cues. Finally, we note the framework's potential for use in creative applications.

* See https://learning-to-paint.github.io for an interactive version of this paper, with videos 
Viaarxiv icon