Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Locally Differentially Private Bayesian Inference


Oct 27, 2021
Tejas Kulkarni, Joonas Jälkö, Samuel Kaski, Antti Honkela


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Differentially Private Bayesian Inference for Generalized Linear Models


Nov 09, 2020
Tejas Kulkarni, Joonas Jälkö, Antti Koskela, Samuel Kaski, Antti Honkela


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Representation Matters: Improving Perception and Exploration for Robotics


Nov 03, 2020
Markus Wulfmeier, Arunkumar Byravan, Tim Hertweck, Irina Higgins, Ankush Gupta, Tejas Kulkarni, Malcolm Reynolds, Denis Teplyashin, Roland Hafner, Thomas Lampe, Martin Riedmiller


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Private Protocols for U-Statistics in the Local Model and Beyond


Oct 09, 2019
James Bell, Aurélien Bellet, Adrià Gascón, Tejas Kulkarni


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Unsupervised Doodling and Painting with Improved SPIRAL


Oct 02, 2019
John F. J. Mellor, Eunbyung Park, Yaroslav Ganin, Igor Babuschkin, Tejas Kulkarni, Dan Rosenbaum, Andy Ballard, Theophane Weber, Oriol Vinyals, S. M. Ali Eslami

* See https://learning-to-paint.github.io for an interactive version of this paper, with videos 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Unsupervised Learning of Object Keypoints for Perception and Control


Jun 19, 2019
Tejas Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Malcolm Reynolds, Andrew Zisserman, Volodymyr Mnih

* supplementary videos at https://www.youtube.com/playlist?list=PL3LT3tVQRpbvGt5fgp_bKGvW23jF11Vi2 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Generating Diverse Programs with Instruction Conditioned Reinforced Adversarial Learning


Dec 03, 2018
Aishwarya Agrawal, Mateusz Malinowski, Felix Hill, Ali Eslami, Oriol Vinyals, Tejas Kulkarni


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Unsupervised Control Through Non-Parametric Discriminative Rewards


Nov 28, 2018
David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, Volodymyr Mnih

* 10 pages + references & 5 page appendix 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Synthesizing Programs for Images using Reinforced Adversarial Learning


Apr 03, 2018
Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali Eslami, Oriol Vinyals

* 12 pages, 13 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>