Abstract:Sentence-level attacks craft adversarial sentences that are synonymous with correctly-classified sentences but are misclassified by the text classifiers. Under the black-box setting, classifiers are only accessible through their feedback to queried inputs, which is predominately available in the form of class probabilities. Even though utilizing class probabilities results in stronger attacks, due to the challenges of using them for sentence-level attacks, existing attacks use either no feedback or only the class labels. Overcoming the challenges, we develop a novel algorithm that uses class probabilities for black-box sentence-level attacks, investigate the effectiveness of using class probabilities on the attack's success, and examine the question if it is worthy or practical to use class probabilities by black-box sentence-level attacks. We conduct extensive evaluations of the proposed attack comparing with the baselines across various classifiers and benchmark datasets.
Abstract:Surrogate-based black-box attacks have exposed the heightened vulnerability of DNNs. These attacks are designed to craft adversarial examples for any samples with black-box target feedback for only a given set of samples. State-of-the-art surrogate-based attacks involve training a discriminative surrogate that mimics the target's outputs. The goal is to learn the decision boundaries of the target. The surrogate is then attacked by white-box attacks to craft adversarial examples similar to the original samples but belong to other classes. With limited samples, the discriminative surrogate fails to accurately learn the target's decision boundaries, and these surrogate-based attacks suffer from low success rates. Different from the discriminative approach, we propose a generative surrogate that learns the distribution of samples residing on or close to the target's decision boundaries. The distribution learned by the generative surrogate can be used to craft adversarial examples that have imperceptible differences from the original samples but belong to other classes. The proposed generative approach results in attacks with remarkably high attack success rates on various targets and datasets.
Abstract:Machine Learning (ML) has become an integral aspect of many real-world applications. As a result, the need for responsible machine learning has emerged, focusing on aligning ML models to ethical and social values, while enhancing their reliability and trustworthiness. Responsible ML involves many issues. This survey addresses four main issues: interpretability, fairness, adversarial robustness, and domain generalization. Feature selection plays a pivotal role in the responsible ML tasks. However, building upon statistical correlations between variables can lead to spurious patterns with biases and compromised performance. This survey focuses on the current study of causal feature selection: what it is and how it can reinforce the four aspects of responsible ML. By identifying features with causal impacts on outcomes and distinguishing causality from correlation, causal feature selection is posited as a unique approach to ensuring ML models to be ethically and socially responsible in high-stakes applications.
Abstract:Adversarial purification is a defense mechanism for safeguarding classifiers against adversarial attacks without knowing the type of attacks or training of the classifier. These techniques characterize and eliminate adversarial perturbations from the attacked inputs, aiming to restore purified samples that retain similarity to the initially attacked ones and are correctly classified by the classifier. Due to the inherent challenges associated with characterizing noise perturbations for discrete inputs, adversarial text purification has been relatively unexplored. In this paper, we investigate the effectiveness of adversarial purification methods in defending text classifiers. We propose a novel adversarial text purification that harnesses the generative capabilities of Large Language Models (LLMs) to purify adversarial text without the need to explicitly characterize the discrete noise perturbations. We utilize prompt engineering to exploit LLMs for recovering the purified examples for given adversarial examples such that they are semantically similar and correctly classified. Our proposed method demonstrates remarkable performance over various classifiers, improving their accuracy under the attack by over 65% on average.
Abstract:Despite the recent remarkable achievement in gaze estimation, efficient and accurate personalization of gaze estimation without labels is a practical problem but rarely touched on in the literature. To achieve efficient personalization, we take inspiration from the recent advances in Natural Language Processing (NLP) by updating a negligible number of parameters, "prompts", at the test time. Specifically, the prompt is additionally attached without perturbing original network and can contain less than 1% of a ResNet-18's parameters. Our experiments show high efficiency of the prompt tuning approach. The proposed one can be 10 times faster in terms of adaptation speed than the methods compared. However, it is non-trivial to update the prompt for personalized gaze estimation without labels. At the test time, it is essential to ensure that the minimizing of particular unsupervised loss leads to the goals of minimizing gaze estimation error. To address this difficulty, we propose to meta-learn the prompt to ensure that its updates align with the goal. Our experiments show that the meta-learned prompt can be effectively adapted even with a simple symmetry loss. In addition, we experiment on four cross-dataset validations to show the remarkable advantages of the proposed method.
Abstract:In this paper, we study the problem of generalizable synthetic image detection, aiming to detect forgery images from diverse generative methods, e.g., GANs and diffusion models. Cutting-edge solutions start to explore the benefits of pre-trained models, and mainly follow the fixed paradigm of solely training an attached classifier, e.g., combining frozen CLIP-ViT with a learnable linear layer in UniFD. However, our analysis shows that such a fixed paradigm is prone to yield detectors with insufficient learning regarding forgery representations. We attribute the key challenge to the lack of forgery adaptation, and present a novel forgery-aware adaptive transformer approach, namely FatFormer. Based on the pre-trained vision-language spaces of CLIP, FatFormer introduces two core designs for the adaption to build generalized forgery representations. First, motivated by the fact that both image and frequency analysis are essential for synthetic image detection, we develop a forgery-aware adapter to adapt image features to discern and integrate local forgery traces within image and frequency domains. Second, we find that considering the contrastive objectives between adapted image features and text prompt embeddings, a previously overlooked aspect, results in a nontrivial generalization improvement. Accordingly, we introduce language-guided alignment to supervise the forgery adaptation with image and text prompts in FatFormer. Experiments show that, by coupling these two designs, our approach tuned on 4-class ProGAN data attains a remarkable detection performance, achieving an average of 98% accuracy to unseen GANs, and surprisingly generalizes to unseen diffusion models with 95% accuracy.
Abstract:Large Language Models (LLMs) have achieved unprecedented breakthroughs in various natural language processing domains. However, the enigmatic ``black-box'' nature of LLMs remains a significant challenge for interpretability, hampering transparent and accountable applications. While past approaches, such as attention visualization, pivotal subnetwork extraction, and concept-based analyses, offer some insight, they often focus on either local or global explanations within a single dimension, occasionally falling short in providing comprehensive clarity. In response, we propose a novel methodology anchored in sparsity-guided techniques, aiming to provide a holistic interpretation of LLMs. Our framework, termed SparseCBM, innovatively integrates sparsity to elucidate three intertwined layers of interpretation: input, subnetwork, and concept levels. In addition, the newly introduced dimension of interpretable inference-time intervention facilitates dynamic adjustments to the model during deployment. Through rigorous empirical evaluations on real-world datasets, we demonstrate that SparseCBM delivers a profound understanding of LLM behaviors, setting it apart in both interpreting and ameliorating model inaccuracies. Codes are provided in supplements.
Abstract:Recently, the proliferation of highly realistic synthetic images, facilitated through a variety of GANs and Diffusions, has significantly heightened the susceptibility to misuse. While the primary focus of deepfake detection has traditionally centered on the design of detection algorithms, an investigative inquiry into the generator architectures has remained conspicuously absent in recent years. This paper contributes to this lacuna by rethinking the architectures of CNN-based generators, thereby establishing a generalized representation of synthetic artifacts. Our findings illuminate that the up-sampling operator can, beyond frequency-based artifacts, produce generalized forgery artifacts. In particular, the local interdependence among image pixels caused by upsampling operators is significantly demonstrated in synthetic images generated by GAN or diffusion. Building upon this observation, we introduce the concept of Neighboring Pixel Relationships(NPR) as a means to capture and characterize the generalized structural artifacts stemming from up-sampling operations. A comprehensive analysis is conducted on an open-world dataset, comprising samples generated by \tft{28 distinct generative models}. This analysis culminates in the establishment of a novel state-of-the-art performance, showcasing a remarkable \tft{11.6\%} improvement over existing methods. The code is available at https://github.com/chuangchuangtan/NPR-DeepfakeDetection.
Abstract:Graph Neural Networks (GNNs) have emerged as a powerful tool for representation learning on graphs, but they often suffer from overfitting and label noise issues, especially when the data is scarce or imbalanced. Different from the paradigm of previous methods that rely on single-node confidence, in this paper, we introduce a novel Class-wise Selection for Graph Neural Networks, dubbed CSGNN, which employs a neighbor-aggregated latent space to adaptively select reliable nodes across different classes. Specifically, 1) to tackle the class imbalance issue, we introduce a dynamic class-wise selection mechanism, leveraging the clustering technique to identify clean nodes based on the neighbor-aggregated confidences. In this way, our approach can avoid the pitfalls of biased sampling which is common with global threshold techniques. 2) To alleviate the problem of noisy labels, built on the concept of the memorization effect, CSGNN prioritizes learning from clean nodes before noisy ones, thereby iteratively enhancing model performance while mitigating label noise. Through extensive experiments, we demonstrate that CSGNN outperforms state-of-the-art methods in terms of both effectiveness and robustness.
Abstract:The contemporary LLMs are prone to producing hallucinations, stemming mainly from the knowledge gaps within the models. To address this critical limitation, researchers employ diverse strategies to augment the LLMs by incorporating external knowledge, aiming to reduce hallucinations and enhance reasoning accuracy. Among these strategies, leveraging knowledge graphs as a source of external information has demonstrated promising results. In this survey, we conduct a comprehensive review of these knowledge-graph-based knowledge augmentation techniques in LLMs, focusing on their efficacy in mitigating hallucinations. We systematically categorize these methods into three overarching groups, offering both methodological comparisons and empirical evaluations of their performance. Lastly, the paper explores the challenges associated with these techniques and outlines potential avenues for future research in this emerging field.