Alert button
Picture for Feng Huang

Feng Huang

Alert button

ECMD: An Event-Centric Multisensory Driving Dataset for SLAM

Nov 04, 2023
Peiyu Chen, Weipeng Guan, Feng Huang, Yihan Zhong, Weisong Wen, Li-Ta Hsu, Peng Lu

Leveraging multiple sensors enhances complex environmental perception and increases resilience to varying luminance conditions and high-speed motion patterns, achieving precise localization and mapping. This paper proposes, ECMD, an event-centric multisensory dataset containing 81 sequences and covering over 200 km of various challenging driving scenarios including high-speed motion, repetitive scenarios, dynamic objects, etc. ECMD provides data from two sets of stereo event cameras with different resolutions (640*480, 346*260), stereo industrial cameras, an infrared camera, a top-installed mechanical LiDAR with two slanted LiDARs, two consumer-level GNSS receivers, and an onboard IMU. Meanwhile, the ground-truth of the vehicle was obtained using a centimeter-level high-accuracy GNSS-RTK/INS navigation system. All sensors are well-calibrated and temporally synchronized at the hardware level, with recording data simultaneously. We additionally evaluate several state-of-the-art SLAM algorithms for benchmarking visual and LiDAR SLAM and identifying their limitations. The dataset is available at https://arclab-hku.github.io/ecmd/.

Viaarxiv icon

3D LiDAR Aided GNSS NLOS Mitigation for Reliable GNSS-RTK Positioning in Urban Canyons

Dec 11, 2022
Xikun Liu, Weisong Wen, Feng Huang, Han Gao, Yongliang Wang, Li-Ta Hsu

Figure 1 for 3D LiDAR Aided GNSS NLOS Mitigation for Reliable GNSS-RTK Positioning in Urban Canyons
Figure 2 for 3D LiDAR Aided GNSS NLOS Mitigation for Reliable GNSS-RTK Positioning in Urban Canyons
Figure 3 for 3D LiDAR Aided GNSS NLOS Mitigation for Reliable GNSS-RTK Positioning in Urban Canyons
Figure 4 for 3D LiDAR Aided GNSS NLOS Mitigation for Reliable GNSS-RTK Positioning in Urban Canyons

GNSS and LiDAR odometry are complementary as they provide absolute and relative positioning, respectively. Their integration in a loosely-coupled manner is straightforward but is challenged in urban canyons due to the GNSS signal reflections. Recent proposed 3D LiDAR-aided (3DLA) GNSS methods employ the point cloud map to identify the non-line-of-sight (NLOS) reception of GNSS signals. This facilitates the GNSS receiver to obtain improved urban positioning but not achieve a sub-meter level. GNSS real-time kinematics (RTK) uses carrier phase measurements to obtain decimeter-level positioning. In urban areas, the GNSS RTK is not only challenged by multipath and NLOS-affected measurement but also suffers from signal blockage by the building. The latter will impose a challenge in solving the ambiguity within the carrier phase measurements. In the other words, the model observability of the ambiguity resolution (AR) is greatly decreased. This paper proposes to generate virtual satellite (VS) measurements using the selected LiDAR landmarks from the accumulated 3D point cloud maps (PCM). These LiDAR-PCM-made VS measurements are tightly-coupled with GNSS pseudorange and carrier phase measurements. Thus, the VS measurements can provide complementary constraints, meaning providing low-elevation-angle measurements in the across-street directions. The implementation is done using factor graph optimization to solve an accurate float solution of the ambiguity before it is fed into LAMBDA. The effectiveness of the proposed method has been validated by the evaluation conducted on our recently open-sourced challenging dataset, UrbanNav. The result shows the fix rate of the proposed 3DLA GNSS RTK is about 30% while the conventional GNSS-RTK only achieves about 14%. In addition, the proposed method achieves sub-meter positioning accuracy in most of the data collected in challenging urban areas.

Viaarxiv icon

HampDTI: a heterogeneous graph automatic meta-path learning method for drug-target interaction prediction

Dec 16, 2021
Hongzhun Wang, Feng Huang, Wen Zhang

Figure 1 for HampDTI: a heterogeneous graph automatic meta-path learning method for drug-target interaction prediction
Figure 2 for HampDTI: a heterogeneous graph automatic meta-path learning method for drug-target interaction prediction
Figure 3 for HampDTI: a heterogeneous graph automatic meta-path learning method for drug-target interaction prediction
Figure 4 for HampDTI: a heterogeneous graph automatic meta-path learning method for drug-target interaction prediction

Motivation: Identifying drug-target interactions (DTIs) is a key step in drug repositioning. In recent years, the accumulation of a large number of genomics and pharmacology data has formed mass drug and target related heterogeneous networks (HNs), which provides new opportunities of developing HN-based computational models to accurately predict DTIs. The HN implies lots of useful information about DTIs but also contains irrelevant data, and how to make the best of heterogeneous networks remains a challenge. Results: In this paper, we propose a heterogeneous graph automatic meta-path learning based DTI prediction method (HampDTI). HampDTI automatically learns the important meta-paths between drugs and targets from the HN, and generates meta-path graphs. For each meta-path graph, the features learned from drug molecule graphs and target protein sequences serve as the node attributes, and then a node-type specific graph convolutional network (NSGCN) which efficiently considers node type information (drugs or targets) is designed to learn embeddings of drugs and targets. Finally, the embeddings from multiple meta-path graphs are combined to predict novel DTIs. The experiments on benchmark datasets show that our proposed HampDTI achieves superior performance compared with state-of-the-art DTI prediction methods. More importantly, HampDTI identifies the important meta-paths for DTI prediction, which could explain how drugs connect with targets in HNs.

* 9 pages, 4 figures 
Viaarxiv icon

Optimal control of robust team stochastic games

May 16, 2021
Feng Huang, Ming Cao, Long Wang

Figure 1 for Optimal control of robust team stochastic games
Figure 2 for Optimal control of robust team stochastic games

In stochastic dynamic environments, team stochastic games have emerged as a versatile paradigm for studying sequential decision-making problems of fully cooperative multi-agent systems. However, the optimality of the derived policies is usually sensitive to the model parameters, which are typically unknown and required to be estimated from noisy data in practice. To mitigate the sensitivity of the optimal policy to these uncertain parameters, in this paper, we propose a model of "robust" team stochastic games, where players utilize a robust optimization approach to make decisions. This model extends team stochastic games to the scenario of incomplete information and meanwhile provides an alternative solution concept of robust team optimality. To seek such a solution, we develop a learning algorithm in the form of a Gauss-Seidel modified policy iteration and prove its convergence. This algorithm, compared with robust dynamic programming, not only possesses a faster convergence rate, but also allows for using approximation calculations to alleviate the curse of dimensionality. Moreover, some numerical simulations are presented to demonstrate the effectiveness of the algorithm by generalizing the game model of social dilemmas to sequential robust scenarios.

* under review 
Viaarxiv icon

Point wise or Feature wise? Benchmark Comparison of Public Available LiDAR Odometry Algorithms in Urban Canyons

Apr 12, 2021
Feng Huang, Weisong Wen, Jiachen Zhang, Li-Ta Hsu

Figure 1 for Point wise or Feature wise? Benchmark Comparison of Public Available LiDAR Odometry Algorithms in Urban Canyons
Figure 2 for Point wise or Feature wise? Benchmark Comparison of Public Available LiDAR Odometry Algorithms in Urban Canyons
Figure 3 for Point wise or Feature wise? Benchmark Comparison of Public Available LiDAR Odometry Algorithms in Urban Canyons
Figure 4 for Point wise or Feature wise? Benchmark Comparison of Public Available LiDAR Odometry Algorithms in Urban Canyons

Robust and precise localization is essential for the autonomous system with navigation requirements. Light detection and ranging (LiDAR) odometry is extensively studied in the past decades to achieve this goal. Satisfactory accuracy can be achieved in scenarios with abundant environmental features using existing LiDAR odometry (LO) algorithms. Unfortunately, the performance of the LiDAR odometry is significantly degraded in urban canyons with numerous dynamic objects and complex environmental structures. Meanwhile, it is still not clear from the existing literature which LO algorithms perform well in such challenging environments. To fill this gap, this paper evaluates an array of popular and extensively studied LO pipelines using the datasets collected in urban canyons of Hong Kong. We present the results in terms of their positioning accuracy and computational efficiency. Three major factors dominating the performance of LO in urban canyons are concluded, including the ego-vehicle dynamic, moving objects, and degree of urbanization. According to our experiment results, point-wise achieves better accuracy in urban canyons while feature-wise achieves cost-efficiency and satisfactory positioning accuracy.

* 15 pages, 14 figures 
Viaarxiv icon

Learning enables adaptation in cooperation for multi-player stochastic games

Jul 29, 2020
Feng Huang, Ming Cao, Long Wang

Figure 1 for Learning enables adaptation in cooperation for multi-player stochastic games
Figure 2 for Learning enables adaptation in cooperation for multi-player stochastic games
Figure 3 for Learning enables adaptation in cooperation for multi-player stochastic games
Figure 4 for Learning enables adaptation in cooperation for multi-player stochastic games

Interactions among individuals in natural populations often occur in a dynamically changing environment. Understanding the role of environmental variation in population dynamics has long been a central topic in theoretical ecology and population biology. However, the key question of how individuals, in the middle of challenging social dilemmas (e.g., the "tragedy of the commons"), modulate their behaviors to adapt to the fluctuation of the environment has not yet been addressed satisfactorily. Utilizing evolutionary game theory and stochastic games, we develop a game-theoretical framework that incorporates the adaptive mechanism of reinforcement learning to investigate whether cooperative behaviors can evolve in the ever-changing group interaction environment. When the action choices of players are just slightly influenced by past reinforcements, we construct an analytical condition to determine whether cooperation can be favored over defection. Intuitively, this condition reveals why and how the environment can mediate cooperative dilemmas. Under our model architecture, we also compare this learning mechanism with two non-learning decision rules, and we find that learning significantly improves the propensity for cooperation in weak social dilemmas, and, in sharp contrast, hinders cooperation in strong social dilemmas. Our results suggest that in complex social-ecological dilemmas, learning enables the adaptation of individuals to varying environments.

Viaarxiv icon

Event Arguments Extraction via Dilate Gated Convolutional Neural Network with Enhanced Local Features

Jun 02, 2020
Zhigang Kan, Linbo Qiao, Sen Yang, Feng Liu, Feng Huang

Figure 1 for Event Arguments Extraction via Dilate Gated Convolutional Neural Network with Enhanced Local Features
Figure 2 for Event Arguments Extraction via Dilate Gated Convolutional Neural Network with Enhanced Local Features
Figure 3 for Event Arguments Extraction via Dilate Gated Convolutional Neural Network with Enhanced Local Features
Figure 4 for Event Arguments Extraction via Dilate Gated Convolutional Neural Network with Enhanced Local Features

Event Extraction plays an important role in information-extraction to understand the world. Event extraction could be split into two subtasks: one is event trigger extraction, the other is event arguments extraction. However, the F-Score of event arguments extraction is much lower than that of event trigger extraction, i.e. in the most recent work, event trigger extraction achieves 80.7%, while event arguments extraction achieves only 58%. In pipelined structures, the difficulty of event arguments extraction lies in its lack of classification feature, and the much higher computation consumption. In this work, we proposed a novel Event Extraction approach based on multi-layer Dilate Gated Convolutional Neural Network (EE-DGCNN) which has fewer parameters. In addition, enhanced local information is incorporated into word features, to assign event arguments roles for triggers predicted by the first subtask. The numerical experiments demonstrated significant performance improvement beyond state-of-art event extraction approaches on real-world datasets. Further analysis of extraction procedure is presented, as well as experiments are conducted to analyze impact factors related to the performance improvement.

Viaarxiv icon

Predicting microRNA-disease associations from knowledge graph using tensor decomposition with relational constraints

Nov 13, 2019
Feng Huang, Zhankun Xiong, Guan Zhang, Zhouxin Yu, Xinran Xu, Wen Zhang

Figure 1 for Predicting microRNA-disease associations from knowledge graph using tensor decomposition with relational constraints
Figure 2 for Predicting microRNA-disease associations from knowledge graph using tensor decomposition with relational constraints
Figure 3 for Predicting microRNA-disease associations from knowledge graph using tensor decomposition with relational constraints
Figure 4 for Predicting microRNA-disease associations from knowledge graph using tensor decomposition with relational constraints

Motivation: MiRNAs are a kind of small non-coding RNAs that are not translated into proteins, and aberrant expression of miRNAs is associated with human diseases. Since miRNAs have different roles in diseases, the miRNA-disease associations are categorized into multiple types according to their roles. Predicting miRNA-disease associations and types is critical to understand the underlying pathogenesis of human diseases from the molecular level. Results: In this paper, we formulate the problem as a link prediction in knowledge graphs. We use biomedical knowledge bases to build a knowledge graph of entities representing miRNAs and disease and multi-relations, and we propose a tensor decomposition-based model named TDRC to predict miRNA-disease associations and their types from the knowledge graph. We have experimentally evaluated our method and compared it to several baseline methods. The results demonstrate that the proposed method has high-accuracy and high-efficiency performances.

Viaarxiv icon

pISTA-SENSE-ResNet for Parallel MRI Reconstruction

Sep 24, 2019
Tieyuan Lu, Xinlin Zhang, Yihui Huang, Yonggui Yang, Gang Guo, Lijun Bao, Feng Huang, Di Guo, Xiaobo Qu

Figure 1 for pISTA-SENSE-ResNet for Parallel MRI Reconstruction
Figure 2 for pISTA-SENSE-ResNet for Parallel MRI Reconstruction
Figure 3 for pISTA-SENSE-ResNet for Parallel MRI Reconstruction
Figure 4 for pISTA-SENSE-ResNet for Parallel MRI Reconstruction

Magnetic resonance imaging has been widely applied in clinical diagnosis, however, is limited by its long data acquisition time. Although imaging can be accelerated by sparse sampling and parallel imaging, achieving promising reconstruction images with a fast reconstruction speed remains a challenge. Recently, deep learning approaches have attracted a lot of attention for its encouraging reconstruction results but without a proper interpretability. In this letter, to enable high-quality image reconstruction for the parallel magnetic resonance imaging, we design the network structure from the perspective of sparse iterative reconstruction and enhance it with the residual structure. The experimental results of a public knee dataset show that compared with the optimization-based method and the latest deep learning parallel imaging methods, the proposed network has less error in reconstruction and is more stable under different acceleration factors.

Viaarxiv icon

A Convergence Proof of Projected Fast Iterative Soft-thresholding Algorithm for Parallel Magnetic Resonance Imaging

Sep 17, 2019
Xinlin Zhang, Hengfa Lu, Di Guo, Lijun Bao, Feng Huang, Xiaobo Qu

Figure 1 for A Convergence Proof of Projected Fast Iterative Soft-thresholding Algorithm for Parallel Magnetic Resonance Imaging
Figure 2 for A Convergence Proof of Projected Fast Iterative Soft-thresholding Algorithm for Parallel Magnetic Resonance Imaging
Figure 3 for A Convergence Proof of Projected Fast Iterative Soft-thresholding Algorithm for Parallel Magnetic Resonance Imaging
Figure 4 for A Convergence Proof of Projected Fast Iterative Soft-thresholding Algorithm for Parallel Magnetic Resonance Imaging

The boom of non-uniform sampling and compressed sensing techniques dramatically alleviates the prolonged data acquisition problem of magnetic resonance imaging. Sparse reconstruction, thanks to its fast computation and promising performance, has attracted researchers to put numerous efforts on it and has been adopted in commercial scanners. Algorithms for solving the sparse reconstruction models play an essential role in sparse reconstruction. Being a simple and efficient algorithm for sparse reconstruction, pFISTA has been successfully extended to parallel imaging, however, its convergence criterion is still an open question, confusing users on the setting of the parameter which assures the convergence of the algorithm. In this work, we prove the convergence of the parallel imaging version pFISTA. Specifically, the convergences of two well-known parallel imaging reconstruction models, SENSE and SPIRiT, solved by pFISTA are proved. Experiments on brain images demonstrate the validity of the convergence criterion. The convergence criterion proofed in this work can help users quickly obtain the satisfy parameter that admits faithful results and fast convergence speeds.

* 10 pages, 7 figures 
Viaarxiv icon