Abstract:Machine learning has emerged as a powerful tool for scientific discovery, enabling researchers to extract meaningful insights from complex datasets. For instance, it has facilitated the identification of disease-predictive genes from gene expression data, significantly advancing healthcare. However, the traditional process for analyzing such datasets demands substantial human effort and expertise for the data selection, processing, and analysis. To address this challenge, we introduce a novel framework, a Team of AI-made Scientists (TAIS), designed to streamline the scientific discovery pipeline. TAIS comprises simulated roles, including a project manager, data engineer, and domain expert, each represented by a Large Language Model (LLM). These roles collaborate to replicate the tasks typically performed by data scientists, with a specific focus on identifying disease-predictive genes. Furthermore, we have curated a benchmark dataset to assess TAIS's effectiveness in gene identification, demonstrating our system's potential to significantly enhance the efficiency and scope of scientific exploration. Our findings represent a solid step towards automating scientific discovery through large language models.
Abstract:The discovery of "jailbreaks" to bypass safety filters of Large Language Models (LLMs) and harmful responses have encouraged the community to implement safety measures. One major safety measure is to proactively test the LLMs with jailbreaks prior to the release. Therefore, such testing will require a method that can generate jailbreaks massively and efficiently. In this paper, we follow a novel yet intuitive strategy to generate jailbreaks in the style of the human generation. We propose a role-playing system that assigns four different roles to the user LLMs to collaborate on new jailbreaks. Furthermore, we collect existing jailbreaks and split them into different independent characteristics using clustering frequency and semantic patterns sentence by sentence. We organize these characteristics into a knowledge graph, making them more accessible and easier to retrieve. Our system of different roles will leverage this knowledge graph to generate new jailbreaks, which have proved effective in inducing LLMs to generate unethical or guideline-violating responses. In addition, we also pioneer a setting in our system that will automatically follow the government-issued guidelines to generate jailbreaks to test whether LLMs follow the guidelines accordingly. We refer to our system as GUARD (Guideline Upholding through Adaptive Role-play Diagnostics). We have empirically validated the effectiveness of GUARD on three cutting-edge open-sourced LLMs (Vicuna-13B, LongChat-7B, and Llama-2-7B), as well as a widely-utilized commercial LLM (ChatGPT). Moreover, our work extends to the realm of vision language models (MiniGPT-v2 and Gemini Vision Pro), showcasing GUARD's versatility and contributing valuable insights for the development of safer, more reliable LLM-based applications across diverse modalities.
Abstract:Despite advances in AI alignment, language models (LM) remain vulnerable to adversarial attacks or jailbreaking, in which adversaries modify input prompts to induce harmful behavior. While some defenses have been proposed, they focus on narrow threat models and fall short of a strong defense, which we posit should be effective, universal, and practical. To achieve this, we propose the first adversarial objective for defending LMs against jailbreaking attacks and an algorithm, robust prompt optimization (RPO), that uses gradient-based token optimization to enforce harmless outputs. This results in an easily accessible suffix that significantly improves robustness to both jailbreaks seen during optimization and unknown, held-out jailbreaks, reducing the attack success rate on Starling-7B from 84% to 8.66% across 20 jailbreaks. In addition, we find that RPO has a minor effect on benign use, is successful under adaptive attacks, and can transfer to black-box models, reducing the success rate of the strongest attack on GPT-4, GUARD, from 92% to 6%.
Abstract:Automated diagnosis of AD in brain images is becoming a clinically important technique to support precision and efficient diagnosis and treatment planning. A few efforts have been made to automatically diagnose AD in magnetic resonance imaging (MRI) using three-dimensional CNNs. However, due to the complexity of 3D models, the performance is still unsatisfactory, both in terms of accuracy and efficiency. To overcome the complexities of 3D images and 3D models, in this study, we aim to attack this problem with 2D vision Transformers. We propose a 2D transformer-based medical image model with various transformer attention encoders to diagnose AD in 3D MRI images, by cutting the 3D images into multiple 2D slices.The model consists of four main components: shared encoders across three dimensions, dimension-specific encoders, attention across images from the same dimension, and attention across three dimensions. It is used to obtain attention relationships among multiple sequences from different dimensions (axial, coronal, and sagittal) and multiple slices. We also propose morphology augmentation, an erosion and dilation based method to increase the structural difference between AD and normal images. In this experiment, we use multiple datasets from ADNI, AIBL, MIRAID, OASIS to show the performance of our model. Our proposed MedTransformer demonstrates a strong ability in diagnosing AD. These results demonstrate the effectiveness of MedTransformer in learning from 3D data using a much smaller model and its capability to generalize among different medical tasks, which provides a possibility to help doctors diagnose AD in a simpler way.
Abstract:The state-of-the-art methods for e-commerce product background generation suffer from the inefficiency of designing product-wise prompts when scaling up the production, as well as the ineffectiveness of describing fine-grained styles when customizing personalized backgrounds for some specific brands. To address these obstacles, we integrate the category commonality and personalized style into diffusion models. Concretely, we propose a Category-Wise Generator to enable large-scale background generation for the first time. A unique identifier in the prompt is assigned to each category, whose attention is located on the background by a mask-guided cross attention layer to learn the category-wise style. Furthermore, for products with specific and fine-grained requirements in layout, elements, etc, a Personality-Wise Generator is devised to learn such personalized style directly from a reference image to resolve textual ambiguities, and is trained in a self-supervised manner for more efficient training data usage. To advance research in this field, the first large-scale e-commerce product background generation dataset BG60k is constructed, which covers more than 60k product images from over 2k categories. Experiments demonstrate that our method could generate high-quality backgrounds for different categories, and maintain the personalized background style of reference images. The link to BG60k and codes will be available soon.
Abstract:Dataset distillation (DD) offers a compelling approach in computer vision, with the goal of condensing extensive datasets into smaller synthetic versions without sacrificing much of the model performance. In this paper, we continue to study the methods for DD, by addressing its conceptually core objective: how to capture the essential representation of extensive datasets in smaller, synthetic forms. We propose a novel approach utilizing the Wasserstein distance, a metric rooted in optimal transport theory, to enhance distribution matching in DD. Our method leverages the Wasserstein barycenter, offering a geometrically meaningful way to quantify distribution differences and effectively capture the centroid of a set of distributions. Our approach retains the computational benefits of distribution matching-based methods while achieving new state-of-the-art performance on several benchmarks. To provide useful prior for learning the images, we embed the synthetic data into the feature space of pretrained classification models to conduct distribution matching. Extensive testing on various high-resolution datasets confirms the effectiveness and adaptability of our method, indicating the promising yet unexplored capabilities of Wasserstein metrics in dataset distillation.
Abstract:In the field of computer graphics, the use of vector graphics, particularly Scalable Vector Graphics (SVG), represents a notable development from traditional pixel-based imagery. SVGs, with their XML-based format, are distinct in their ability to directly and explicitly represent visual elements such as shape, color, and path. This direct representation facilitates a more accurate and logical depiction of graphical elements, enhancing reasoning and interpretability. Recognizing the potential of SVGs, the machine learning community has introduced multiple methods for image vectorization. However, transforming images into SVG format while retaining the relational properties and context of the original scene remains a key challenge. Most vectorization methods often yield SVGs that are overly complex and not easily interpretable. In response to this challenge, we introduce our method, Simple-SVG-Generation (S\textsuperscript{2}VG\textsuperscript{2}). Our method focuses on producing SVGs that are both accurate and simple, aligning with human readability and understanding. With simple images, we evaluate our method with reasoning tasks together with advanced language models, the results show a clear improvement over previous SVG generation methods. We also conducted surveys for human evaluation on the readability of our generated SVGs, the results also favor our methods.
Abstract:Domain Generalization (DG), a crucial research area, seeks to train models across multiple domains and test them on unseen ones. In this paper, we introduce a novel approach, namely, Selective Cross-Modality Distillation for Domain Generalization (SCMD). SCMD leverages the capabilities of large vision-language models, specifically the CLIP model, to train a more efficient model, ensuring it acquires robust generalization capabilities across unseen domains. Our primary contribution is a unique selection framework strategically designed to identify hard-to-learn samples for distillation. In parallel, we introduce a novel cross-modality module. This module seamlessly combines the projected features of the student model with the text embeddings from CLIP, ensuring the alignment of similarity distributions. We assess SCMD's performance on various benchmarks, where it empowers a ResNet50 to deliver state-of-the-art performance, surpassing existing domain generalization methods. Furthermore, we provide a theoretical analysis of our selection strategy, offering deeper insight into its effectiveness and potential in the field of DG.
Abstract:We propose a conceptually simple and lightweight framework for improving the robustness of vision models through the combination of knowledge distillation and data augmentation. We address the conjecture that larger models do not make for better teachers by showing strong gains in out-of-distribution robustness when distilling from pretrained foundation models. Following this finding, we propose Discrete Adversarial Distillation (DAD), which leverages a robust teacher to generate adversarial examples and a VQGAN to discretize them, creating more informative samples than standard data augmentation techniques. We provide a theoretical framework for the use of a robust teacher in the knowledge distillation with data augmentation setting and demonstrate strong gains in out-of-distribution robustness and clean accuracy across different student architectures. Notably, our method adds minor computational overhead compared to similar techniques and can be easily combined with other data augmentations for further improvements.
Abstract:Personalized federated learning algorithms have shown promising results in adapting models to various distribution shifts. However, most of these methods require labeled data on testing clients for personalization, which is usually unavailable in real-world scenarios. In this paper, we introduce a novel setting called test-time personalized federated learning (TTPFL), where clients locally adapt a global model in an unsupervised way without relying on any labeled data during test-time. While traditional test-time adaptation (TTA) can be used in this scenario, most of them inherently assume training data come from a single domain, while they come from multiple clients (source domains) with different distributions. Overlooking these domain interrelationships can result in suboptimal generalization. Moreover, most TTA algorithms are designed for a specific kind of distribution shift and lack the flexibility to handle multiple kinds of distribution shifts in FL. In this paper, we find that this lack of flexibility partially results from their pre-defining which modules to adapt in the model. To tackle this challenge, we propose a novel algorithm called ATP to adaptively learns the adaptation rates for each module in the model from distribution shifts among source domains. Theoretical analysis proves the strong generalization of ATP. Extensive experiments demonstrate its superiority in handling various distribution shifts including label shift, image corruptions, and domain shift, outperforming existing TTA methods across multiple datasets and model architectures. Our code is available at https://github.com/baowenxuan/ATP .