Training dense passage representations via contrastive learning (CL) has been shown effective for Open-Domain Passage Retrieval (ODPR). Recent studies mainly focus on optimizing this CL framework by improving the sampling strategy or extra pretraining. Different from previous studies, this work devotes itself to investigating the influence of conflicts in the widely used CL strategy in ODPR, motivated by our observation that a passage can be organized by multiple semantically different sentences, thus modeling such a passage as a unified dense vector is not optimal. We call such conflicts Contrastive Conflicts. In this work, we propose to solve it with a representation decoupling method, by decoupling the passage representations into contextual sentence-level ones, and design specific CL strategies to mediate these conflicts. Experiments on widely used datasets including Natural Questions, Trivia QA, and SQuAD verify the effectiveness of our method, especially on the dataset where the conflicting problem is severe. Our method also presents good transferability across the datasets, which further supports our idea of mediating Contrastive Conflicts.
Training machines to understand natural language and interact with humans is an elusive and essential task of artificial intelligence. A diversity of dialogue systems has been designed with the rapid development of deep learning techniques, especially the recent pre-trained language models (PrLMs). Among these studies, the fundamental yet challenging type of task is dialogue comprehension whose role is to teach the machines to read and comprehend the dialogue context before responding. In this paper, we review the previous methods from the technical perspective of dialogue modeling for the dialogue comprehension task. We summarize the characteristics and challenges of dialogue comprehension in contrast to plain-text reading comprehension. Then, we discuss three typical patterns of dialogue modeling. In addition, we categorize dialogue-related pre-training techniques which are employed to enhance PrLMs in dialogue scenarios. Finally, we highlight the technical advances in recent years and point out the lessons from the empirical analysis and the prospects towards a new frontier of researches.
Multi-party dialogue machine reading comprehension (MRC) raises an even more challenging understanding goal on dialogue with more than two involved speakers, compared with the traditional plain passage style MRC. To accurately perform the question-answering (QA) task according to such multi-party dialogue, models have to handle fundamentally different discourse relationships from common non-dialogue plain text, where discourse relations are supposed to connect two far apart utterances in a linguistics-motivated way.To further explore the role of such unusual discourse structure on the correlated QA task in terms of MRC, we propose the first multi-task model for jointly performing QA and discourse parsing (DP) on the multi-party dialogue MRC task. Our proposed model is evaluated on the latest benchmark Molweni, whose results indicate that training with complementary tasks indeed benefits not only QA task, but also DP task itself. We further find that the joint model is distinctly stronger when handling longer dialogues which again verifies the necessity of DP in the related MRC.
In this paper, we leverage pre-trained language models (PLMs) to precisely evaluate the semantics preservation of edition process on sentences. Our metric, Neighbor Distribution Divergence (NDD), evaluates the disturbance on predicted distribution of neighboring words from mask language model (MLM). NDD is capable of detecting precise changes in semantics which are easily ignored by text similarity. By exploiting the property of NDD, we implement a unsupervised and even training-free algorithm for extractive sentence compression. We show that our NDD-based algorithm outperforms previous perplexity-based unsupervised algorithm by a large margin. For further exploration on interpretability, we evaluate NDD by pruning on syntactic dependency treebanks and apply NDD for predicate detection as well.
Attention scorers have achieved success in parsing tasks like semantic and syntactic dependency parsing. However, in tasks modeled into parsing, like structured sentiment analysis, "dependency edges" are very sparse which hinders parser performance. Thus we propose a sparse and fuzzy attention scorer with pooling layers which improves parser performance and sets the new state-of-the-art on structured sentiment analysis. We further explore the parsing modeling on structured sentiment analysis with second-order parsing and introduce a novel sparse second-order edge building procedure that leads to significant improvement in parsing performance.
Multi-party dialogue machine reading comprehension (MRC) brings tremendous challenge since it involves multiple speakers at one dialogue, resulting in intricate speaker information flows and noisy dialogue contexts. To alleviate such difficulties, previous models focus on how to incorporate these information using complex graph-based modules and additional manually labeled data, which is usually rare in real scenarios. In this paper, we design two labour-free self- and pseudo-self-supervised prediction tasks on speaker and key-utterance to implicitly model the speaker information flows, and capture salient clues in a long dialogue. Experimental results on two benchmark datasets have justified the effectiveness of our method over competitive baselines and current state-of-the-art models.
Multi-party multi-turn dialogue comprehension brings unprecedented challenges on handling the complicated scenarios from multiple speakers and criss-crossed discourse relationship among speaker-aware utterances. Most existing methods deal with dialogue contexts as plain texts and pay insufficient attention to the crucial speaker-aware clues. In this work, we propose an enhanced speaker-aware model with masking attention and heterogeneous graph networks to comprehensively capture discourse clues from both sides of speaker property and speaker-aware relationships. With such comprehensive speaker-aware modeling, experimental results show that our speaker-aware model helps achieves state-of-the-art performance on the benchmark dataset Molweni. Case analysis shows that our model enhances the connections between utterances and their own speakers and captures the speaker-aware discourse relations, which are critical for dialogue modeling.
Conversational machine reading (CMR) requires machines to communicate with humans through multi-turn interactions between two salient dialogue states of decision making and question generation processes. In open CMR settings, as the more realistic scenario, the retrieved background knowledge would be noisy, which results in severe challenges in the information transmission. Existing studies commonly train independent or pipeline systems for the two subtasks. However, those methods are trivial by using hard-label decisions to activate question generation, which eventually hinders the model performance. In this work, we propose an effective gating strategy by smoothing the two dialogue states in only one decoder and bridge decision making and question generation to provide a richer dialogue state reference. Experiments on the OR-ShARC dataset show the effectiveness of our method, which achieves new state-of-the-art results.