Sherman
Abstract:The integrated sensing and communication (ISAC) technique has the potential to achieve coordination gain by exploiting the mutual assistance between sensing and communication (S&C) functions. While the sensing-assisted communications (SAC) technology has been extensively studied for high-mobility scenarios, the communication-assisted sensing (CAS) counterpart remains widely unexplored. This paper presents a waveform design framework for CAS in 6G perceptive networks, aiming to attain an optimal sensing quality of service (QoS) at the user after the target's parameters successively ``pass-through'' the S$\&$C channels. In particular, a pair of transmission schemes, namely, separated S&C and dual-functional waveform designs, are proposed to optimize the sensing QoS under the constraints of the rate-distortion and power budget. The first scheme reveals a power allocation trade-off, while the latter presents a water-filling trade-off. Numerical results demonstrate the effectiveness of the proposed algorithms, where the dual-functional scheme exhibits approximately 12% performance gain compared to its separated waveform design counterpart.
Abstract:In this paper, we propose a two-bit reconfigurable intelligent surface (RIS)-aided communication system, which mainly consists of a two-bit RIS, a transmitter and a receiver. A corresponding prototype verification system is designed to perform experimental tests in practical environments. The carrier frequency is set as 3.5GHz, and the RIS array possesses 256 units, each of which adopts two-bit phase quantization. In particular, we adopt a self-developed broadband intelligent communication system 40MHz-Net (BICT-40N) terminal in order to fully acquire the channel information. The terminal mainly includes a baseband board and a radio frequency (RF) front-end board, where the latter can achieve 26 dB transmitting link gain and 33 dB receiving link gain. The orthogonal frequency division multiplexing (OFDM) signal is used for the terminal, where the bandwidth is 40MHz and the subcarrier spacing is 625KHz. Also, the terminal supports a series of modulation modes, including QPSK, QAM, etc.Through experimental tests, we validate a few functions and properties of the RIS as follows. First, we validate a novel RIS power consumption model, which considers both the static and the dynamic power consumption. Besides, we demonstrate the existence of the imaging interference and find that two-bit RIS can lower the imaging interference about 10 dBm. Moreover, we verify that the RIS can outperform the metal plate in terms of the beam focusing performance. In addition, we find that the RIS has the ability to improve the channel stationarity. Then, we realize the multi-beam reflection of the RIS utilizing the pattern addition (PA) algorithm. Lastly, we validate the existence of the mutual coupling between different RIS units.
Abstract:Near field computational imaging has been recognized as a promising technique for non-destructive and highly accurate detection of the target. Meanwhile, reconfigurable intelligent surface (RIS) can flexibly control the scattered electromagnetic (EM) fields for sensing the target and can thus help computational imaging in the near field. In this paper, we propose a near-field imaging scheme based on holograghic aperture RIS. Specifically, we first establish an end-to-end EM propagation model from the perspective of Maxwell equations. To mitigate the inherent ill conditioning of the inverse problem in the imaging system, we design the EM field patterns as masks that help translate the inverse problem into a forward problem. Next, we utilize RIS to generate different virtual EM masks on the target surface and calculate the cross-correlation between the mask patterns and the electric field strength at the receiver. We then provide a RIS design scheme for virtual EM masks by employing a regularization technique. The cross-range resolution of the proposed method is analyzed based on the spatial spectrum of the generated masks. Simulation results demonstrate that the proposed method can achieve high-quality imaging. Moreover, the imaging quality can be improved by generating more virtual EM masks, by increasing the signal-to-noise ratio (SNR) at the receiver, or by placing the target closer to the RIS.
Abstract:Visual perception is an effective way to obtain the spatial characteristics of wireless channels and to reduce the overhead for communications system. A critical problem for the visual assistance is that the communications system needs to match the radio signal with the visual information of the corresponding user, i.e., to identify the visual user that corresponds to the target radio signal from all the environmental objects. In this paper, we propose a user matching method for environment with a variable number of objects. Specifically, we apply 3D detection to extract all the environmental objects from the images taken by multiple cameras. Then, we design a deep neural network (DNN) to estimate the location distribution of users by the images and beam pairs at multiple moments, and thereby identify the users from all the extracted environmental objects. Moreover, we present a resource allocation method based on the taken images to reduce the time and spectrum overhead compared to traditional resource allocation methods. Simulation results show that the proposed user matching method outperforms the existing methods, and the proposed resource allocation method can achieve $92\%$ transmission rate of the traditional resource allocation method but with the time and spectrum overhead significantly reduced.
Abstract:We propose a novel cooperative joint sensing-communication (JSC) unmanned aerial vehicle (UAV) network that can achieve downward-looking detection and transmit detection data simultaneously using the same time and frequency resources by exploiting the beam sharing scheme. The UAV network consists of a UAV that works as a fusion center (FCUAV) and multiple subordinate UAVs (SU). All UAVs fly at the fixed height. FCUAV integrates the sensing data of network and carries out downward-looking detection. SUs carry out downward-looking detection and transmit the sensing data to FCUAV. To achieve the beam sharing scheme, each UAV is equipped with a novel JSC antenna array that is composed of both the sensing subarray (SenA) and the communication subarray (ComA) in order to generate the sensing beam (SenB) and the communication beam (ComB) for detection and communication, respectively. SenB and ComB of each UAV share a total amount of radio power. Because of the spatial orthogonality of communication and sensing, SenB and ComB can be easily formed orthogonally. The upper bound of average cooperative sensing area (UB-ACSA) is defined as the metric to measure the sensing performance, which is related to the mutual sensing interference and the communication capacity. Numerical simulations prove the validity of the theoretical expressions for UB-ACSA of the network. The optimal number of UAVs and the optimal SenB power are identified under the total power constraint.
Abstract:Antennas that can dynamically change the operation state exhibit excellent adaptivity and flexibility over traditional antennas, and MIMO arrays that consist of Multifunctional and reconfigurable antennas (MRAs) are foreseen as one promising solution towards future Holographic MIMO. Specifically, in pattern reconfigurable MIMO (PR-MIMO) communication systems, accurate acquisition of channel state information (CSI) of all the radiation modes is a challenging task, because using conventional pilot-based channel estimation techniques in PR-MIMO systems incurs overwhelming pilot overheads. In this letter, we leverage deep learning methods to design a PR neural network, which can use the estimated CSI for one radiation mode to infer CSIs for the other radiation modes. In order to reduce the pilot overheads, we propose a new channel estimation method specially for PR-MIMO systems which divides the transmit antennas of PR-MIMO into groups, where antennas in different groups employ different radiation modes. Comparing with conventional full connected deep neural networks (FNN), the PR neural network which uses complex weight coefficients can work directly in the complex domain. Experiment results show that the proposed channel extrapolation method offers significant performance gains in terms of prediction accuracy over benchmark schemes.
Abstract:In this paper, we study the three-dimensional (3D) simultaneous localization and mapping (SLAM) problem in complex outdoor and indoor environments based only on millimeter-wave (mmWave) wireless communication signals. Firstly, we propose a deep-learning based mapping (DLM) algorithm that can leverage the reflections point on the first-order none line-of-sight (NLOS) communications links (CLs) to build the 3D point cloud map of the environment. Specifically, we design a classification neural network to identify the first-order NLOS CL and theoretically calculate the geometric coordinates of the reflection points on it. Secondly, we take the advantage of both the inertial measurement unit and the beam-squint assisted localization method to realize real-time and precise localizations. Then, combining the DLM and the adopted localization algorithm, we develop the communication-based SLAM (C-SLAM) framework that can carry out SLAM without any prior knowledge of the environment. Moreover, extensive simulations of both complex outdoor and indoor environments validate the effectiveness of our approach.
Abstract:To reap the promising benefits of massive multiple-input multiple-output (MIMO) systems, accurate channel state information (CSI) is required through channel estimation. However, due to the complicated wireless propagation environment and large-scale antenna arrays, precise channel estimation for massive MIMO systems is significantly challenging and costs an enormous training overhead. Considerable time-frequency resources are consumed to acquire sufficient accuracy of CSI, which thus severely degrades systems' spectral and energy efficiencies. In this paper, we propose a dual-attention-based channel estimation network (DACEN) to realize accurate channel estimation via low-density pilots, by decoupling the spatial-temporal domain features of massive MIMO channels with the temporal attention module and the spatial attention module. To further improve the estimation accuracy, we propose a parameter-instance transfer learning approach based on the DACEN to transfer the channel knowledge learned from the high-density pilots pre-acquired during the training dataset collection period. Experimental results on a publicly available dataset reveal that the proposed DACEN-based method with low-density pilots ($\rho_L=6/52$) achieves better channel estimation performance than the existing methods even with higher-density pilots ($\rho_H=26/52$). Additionally, with the proposed transfer learning approach, the DACEN-based method with ultra-low-density pilots ($\rho_L^\prime=2/52$) achieves higher estimation accuracy than the existing methods with low-density pilots, thereby demonstrating the effectiveness and the superiority of the proposed method.
Abstract:We propose a deep learning algorithm for solving high-dimensional parabolic integro-differential equations (PIDEs) and high-dimensional forward-backward stochastic differential equations with jumps (FBSDEJs), where the jump-diffusion process are derived by a Brownian motion and an independent compensated Poisson random measure. In this novel algorithm, a pair of deep neural networks for the approximations of the gradient and the integral kernel is introduced in a crucial way based on deep FBSDE method. To derive the error estimates for this deep learning algorithm, the convergence of Markovian iteration, the error bound of Euler time discretization, and the simulation error of deep learning algorithm are investigated. Two numerical examples are provided to show the efficiency of this proposed algorithm.
Abstract:The recently proposed orthogonal time frequency space (OTFS) modulation multiplexes data symbols in the delay-Doppler (DD) domain. Since the range and velocity, which can be derived from the delay and Doppler shifts, are the parameters of interest for radar sensing, it is natural to consider implementing DD signal processing for radar sensing. In this paper, we investigate the potential connections between the OTFS and DD domain radar signal processing. Our analysis shows that the range-Doppler matrix computing process in radar sensing is exactly the demodulation of OTFS with a rectangular pulse shaping filter. Furthermore, we propose a two-dimensional (2D) correlation-based algorithm to estimate the fractional delay and Doppler parameters for radar sensing. Simulation results show that the proposed algorithm can efficiently obtain the delay and Doppler shifts associated with multiple targets.