Richard
Abstract:This paper revives Densely Connected Convolutional Networks (DenseNets) and reveals the underrated effectiveness over predominant ResNet-style architectures. We believe DenseNets' potential was overlooked due to untouched training methods and traditional design elements not fully revealing their capabilities. Our pilot study shows dense connections through concatenation are strong, demonstrating that DenseNets can be revitalized to compete with modern architectures. We methodically refine suboptimal components - architectural adjustments, block redesign, and improved training recipes towards widening DenseNets and boosting memory efficiency while keeping concatenation shortcuts. Our models, employing simple architectural elements, ultimately surpass Swin Transformer, ConvNeXt, and DeiT-III - key architectures in the residual learning lineage. Furthermore, our models exhibit near state-of-the-art performance on ImageNet-1K, competing with the very recent models and downstream tasks, ADE20k semantic segmentation, and COCO object detection/instance segmentation. Finally, we provide empirical analyses that uncover the merits of the concatenation over additive shortcuts, steering a renewed preference towards DenseNet-style designs. Our code is available at https://github.com/naver-ai/rdnet.
Abstract:Time series forecasting is one of the most essential and ubiquitous tasks in many business problems, including demand forecasting and logistics optimization. Traditional time series forecasting methods, however, have resulted in small models with limited expressive power because they have difficulty in scaling their model size up while maintaining high accuracy. In this paper, we propose Forecasting orchestra (Forchestra), a simple but powerful framework capable of accurately predicting future demand for a diverse range of items. We empirically demonstrate that the model size is scalable to up to 0.8 billion parameters. The proposed method not only outperforms existing forecasting models with a significant margin, but it could generalize well to unseen data points when evaluated in a zero-shot fashion on downstream datasets. Last but not least, we present extensive qualitative and quantitative studies to analyze how the proposed model outperforms baseline models and differs from conventional approaches. The original paper was presented as a full paper at ICDM 2022 and is available at: https://ieeexplore.ieee.org/document/10027662.
Abstract:Large Language Models (LLMs) struggle to handle long input sequences due to high memory and runtime costs. Memory-augmented models have emerged as a promising solution to this problem, but current methods are hindered by limited memory capacity and require costly re-training to integrate with a new LLM. In this work, we introduce an associative memory module which can be coupled to any pre-trained (frozen) attention-based LLM without re-training, enabling it to handle arbitrarily long input sequences. Unlike previous methods, our associative memory module consolidates representations of individual tokens into a non-parametric distribution model, dynamically managed by properly balancing the novelty and recency of the incoming data. By retrieving information from this consolidated associative memory, the base LLM can achieve significant (up to 29.7% on Arxiv) perplexity reduction in long-context modeling compared to other baselines evaluated on standard benchmarks. This architecture, which we call CAMELoT (Consolidated Associative Memory Enhanced Long Transformer), demonstrates superior performance even with a tiny context window of 128 tokens, and also enables improved in-context learning with a much larger set of demonstrations.
Abstract:Dog guides are favored by blind and low-vision (BLV) individuals for their ability to enhance independence and confidence by reducing safety concerns and increasing navigation efficiency compared to traditional mobility aids. However, only a relatively small proportion of BLV individuals work with dog guides due to their limited availability and associated maintenance responsibilities. There is considerable recent interest in addressing this challenge by developing legged guide dog robots. This study was designed to determine critical aspects of the handler-guide dog interaction and better understand handler needs to inform guide dog robot development. We conducted semi-structured interviews and observation sessions with 23 dog guide handlers and 5 trainers. Thematic analysis revealed critical limitations in guide dog work, desired personalization in handler-guide dog interaction, and important perspectives on future guide dog robots. Grounded on these findings, we discuss pivotal design insights for guide dog robots aimed for adoption within the BLV community.
Abstract:Safely navigating street intersections is a complex challenge for blind and low-vision individuals, as it requires a nuanced understanding of the surrounding context - a task heavily reliant on visual cues. Traditional methods for assisting in this decision-making process often fall short, lacking the ability to provide a comprehensive scene analysis and safety level. This paper introduces an innovative approach that leverages large multimodal models (LMMs) to interpret complex street crossing scenes, offering a potential advancement over conventional traffic signal recognition techniques. By generating a safety score and scene description in natural language, our method supports safe decision-making for the blind and low-vision individuals. We collected crosswalk intersection data that contains multiview egocentric images captured by a quadruped robot and annotated the images with corresponding safety scores based on our predefined safety score categorization. Grounded on the visual knowledge, extracted from images, and text prompt, we evaluate a large multimodal model for safety score prediction and scene description. Our findings highlight the reasoning and safety score prediction capabilities of a LMM, activated by various prompts, as a pathway to developing a trustworthy system, crucial for applications requiring reliable decision-making support.
Abstract:Scene graph generation (SGG) models have suffered from inherent problems regarding the benchmark datasets such as the long-tailed predicate distribution and missing annotation problems. In this work, we aim to alleviate the long-tailed problem of SGG by utilizing unannotated triplets. To this end, we introduce a Self-Training framework for SGG (ST-SGG) that assigns pseudo-labels for unannotated triplets based on which the SGG models are trained. While there has been significant progress in self-training for image recognition, designing a self-training framework for the SGG task is more challenging due to its inherent nature such as the semantic ambiguity and the long-tailed distribution of predicate classes. Hence, we propose a novel pseudo-labeling technique for SGG, called Class-specific Adaptive Thresholding with Momentum (CATM), which is a model-agnostic framework that can be applied to any existing SGG models. Furthermore, we devise a graph structure learner (GSL) that is beneficial when adopting our proposed self-training framework to the state-of-the-art message-passing neural network (MPNN)-based SGG models. Our extensive experiments verify the effectiveness of ST-SGG on various SGG models, particularly in enhancing the performance on fine-grained predicate classes.
Abstract:This paper lays down the research agenda for a domain-specific foundation model for operating systems (OSes). Our case for a foundation model revolves around the observations that several OS components such as CPU, memory, and network subsystems are interrelated and that OS traces offer the ideal dataset for a foundation model to grasp the intricacies of diverse OS components and their behavior in varying environments and workloads. We discuss a wide range of possibilities that then arise, from employing foundation models as policy agents to utilizing them as generators and predictors to assist traditional OS control algorithms. Our hope is that this paper spurs further research into OS foundation models and creating the next generation of operating systems for the evolving computing landscape.
Abstract:It is a well-known fact that the performance of deep learning models deteriorates when they encounter a distribution shift at test time. Test-time adaptation (TTA) algorithms have been proposed to adapt the model online while inferring test data. However, existing research predominantly focuses on classification tasks through the optimization of batch normalization layers or classification heads, but this approach limits its applicability to various model architectures like Transformers and makes it challenging to apply to other tasks, such as object detection. In this paper, we propose a novel online adaption approach for object detection in continually changing test domains, considering which part of the model to update, how to update it, and when to perform the update. By introducing architecture-agnostic and lightweight adaptor modules and only updating these while leaving the pre-trained backbone unchanged, we can rapidly adapt to new test domains in an efficient way and prevent catastrophic forgetting. Furthermore, we present a practical and straightforward class-wise feature aligning method for object detection to resolve domain shifts. Additionally, we enhance efficiency by determining when the model is sufficiently adapted or when additional adaptation is needed due to changes in the test distribution. Our approach surpasses baselines on widely used benchmarks, achieving improvements of up to 4.9\%p and 7.9\%p in mAP for COCO $\rightarrow$ COCO-corrupted and SHIFT, respectively, while maintaining about 20 FPS or higher.
Abstract:Pre-training on massive video datasets has become essential to achieve high action recognition performance on smaller downstream datasets. However, most large-scale video datasets contain images of people and hence are accompanied with issues related to privacy, ethics, and data protection, often preventing them from being publicly shared for reproducible research. Existing work has attempted to alleviate these problems by blurring faces, downsampling videos, or training on synthetic data. On the other hand, analysis on the transferability of privacy-preserving pre-trained models to downstream tasks has been limited. In this work, we study this problem by first asking the question: can we pre-train models for human action recognition with data that does not include real humans? To this end, we present, for the first time, a benchmark that leverages real-world videos with humans removed and synthetic data containing virtual humans to pre-train a model. We then evaluate the transferability of the representation learned on this data to a diverse set of downstream action recognition benchmarks. Furthermore, we propose a novel pre-training strategy, called Privacy-Preserving MAE-Align, to effectively combine synthetic data and human-removed real data. Our approach outperforms previous baselines by up to 5% and closes the performance gap between human and no-human action recognition representations on downstream tasks, for both linear probing and fine-tuning. Our benchmark, code, and models are available at https://github.com/howardzh01/PPMA .
Abstract:Weakly-Supervised Scene Graph Generation (WSSGG) research has recently emerged as an alternative to the fully-supervised approach that heavily relies on costly annotations. In this regard, studies on WSSGG have utilized image captions to obtain unlocalized triplets while primarily focusing on grounding the unlocalized triplets over image regions. However, they have overlooked the two issues involved in the triplet formation process from the captions: 1) Semantic over-simplification issue arises when extracting triplets from captions, where fine-grained predicates in captions are undesirably converted into coarse-grained predicates, resulting in a long-tailed predicate distribution, and 2) Low-density scene graph issue arises when aligning the triplets in the caption with entity/predicate classes of interest, where many triplets are discarded and not used in training, leading to insufficient supervision. To tackle the two issues, we propose a new approach, i.e., Large Language Model for weakly-supervised SGG (LLM4SGG), where we mitigate the two issues by leveraging the LLM's in-depth understanding of language and reasoning ability during the extraction of triplets from captions and alignment of entity/predicate classes with target data. To further engage the LLM in these processes, we adopt the idea of Chain-of-Thought and the in-context few-shot learning strategy. To validate the effectiveness of LLM4SGG, we conduct extensive experiments on Visual Genome and GQA datasets, showing significant improvements in both Recall@K and mean Recall@K compared to the state-of-the-art WSSGG methods. A further appeal is that LLM4SGG is data-efficient, enabling effective model training with a small amount of training images.