Abstract:Urban spatio-temporal prediction is crucial for informed decision-making, such as transportation management, resource optimization, and urban planning. Although pretrained foundation models for natural languages have experienced remarkable breakthroughs, wherein one general-purpose model can tackle multiple tasks across various domains, urban spatio-temporal modeling lags behind. Existing approaches for urban prediction are usually tailored for specific spatio-temporal scenarios, requiring task-specific model designs and extensive in-domain training data. In this work, we propose a universal model, UniST, for urban spatio-temporal prediction. Drawing inspiration from large language models, UniST achieves success through: (i) flexibility towards diverse spatio-temporal data characteristics, (ii) effective generative pre-training with elaborated masking strategies to capture complex spatio-temporal relationships, (iii) spatio-temporal knowledge-guided prompts that align and leverage intrinsic and shared knowledge across scenarios. These designs together unlock the potential of a one-for-all model for spatio-temporal prediction with powerful generalization capability. Extensive experiments on 15 cities and 6 domains demonstrate the universality of UniST in advancing state-of-the-art prediction performance, especially in few-shot and zero-shot scenarios.
Abstract:Modern personalized recommendation services often rely on user feedback, either explicit or implicit, to improve the quality of services. Explicit feedback refers to behaviors like ratings, while implicit feedback refers to behaviors like user clicks. However, in the scenario of full-screen video viewing experiences like Tiktok and Reels, the click action is absent, resulting in unclear feedback from users, hence introducing noises in modeling training. Existing approaches on de-noising recommendation mainly focus on positive instances while ignoring the noise in a large amount of sampled negative feedback. In this paper, we propose a meta-learning method to annotate the unlabeled data from loss and gradient perspectives, which considers the noises in both positive and negative instances. Specifically, we first propose an Inverse Dual Loss (IDL) to boost the true label learning and prevent the false label learning. Then we further propose an Inverse Gradient (IG) method to explore the correct updating gradient and adjust the updating based on meta-learning. Finally, we conduct extensive experiments on both benchmark and industrial datasets where our proposed method can significantly improve AUC by 9.25% against state-of-the-art methods. Further analysis verifies the proposed inverse learning framework is model-agnostic and can improve a variety of recommendation backbones. The source code, along with the best hyper-parameter settings, is available at this link: https://github.com/Guanyu-Lin/InverseLearning.
Abstract:In modern recommender systems, sequential recommendation leverages chronological user behaviors to make effective next-item suggestions, which suffers from data sparsity issues, especially for new users. One promising line of work is the cross-domain recommendation, which trains models with data across multiple domains to improve the performance in data-scarce domains. Recent proposed cross-domain sequential recommendation models such as PiNet and DASL have a common drawback relying heavily on overlapped users in different domains, which limits their usage in practical recommender systems. In this paper, we propose a Mixed Attention Network (MAN) with local and global attention modules to extract the domain-specific and cross-domain information. Firstly, we propose a local/global encoding layer to capture the domain-specific/cross-domain sequential pattern. Then we propose a mixed attention layer with item similarity attention, sequence-fusion attention, and group-prototype attention to capture the local/global item similarity, fuse the local/global item sequence, and extract the user groups across different domains, respectively. Finally, we propose a local/global prediction layer to further evolve and combine the domain-specific and cross-domain interests. Experimental results on two real-world datasets (each with two domains) demonstrate the superiority of our proposed model. Further study also illustrates that our proposed method and components are model-agnostic and effective, respectively. The code and data are available at https://github.com/Guanyu-Lin/MAN.
Abstract:Stance detection automatically detects the stance in a text towards a target, vital for content analysis in web and social media research. Despite their promising capabilities, LLMs encounter challenges when directly applied to stance detection. First, stance detection demands multi-aspect knowledge, from deciphering event-related terminologies to understanding the expression styles in social media platforms. Second, stance detection requires advanced reasoning to infer authors' implicit viewpoints, as stance are often subtly embedded rather than overtly stated in the text. To address these challenges, we design a three-stage framework COLA (short for Collaborative rOle-infused LLM-based Agents) in which LLMs are designated distinct roles, creating a collaborative system where each role contributes uniquely. Initially, in the multidimensional text analysis stage, we configure the LLMs to act as a linguistic expert, a domain specialist, and a social media veteran to get a multifaceted analysis of texts, thus overcoming the first challenge. Next, in the reasoning-enhanced debating stage, for each potential stance, we designate a specific LLM-based agent to advocate for it, guiding the LLM to detect logical connections between text features and stance, tackling the second challenge. Finally, in the stance conclusion stage, a final decision maker agent consolidates prior insights to determine the stance. Our approach avoids extra annotated data and model training and is highly usable. We achieve state-of-the-art performance across multiple datasets. Ablation studies validate the effectiveness of each design role in handling stance detection. Further experiments have demonstrated the explainability and the versatility of our approach. Our approach excels in usability, accuracy, effectiveness, explainability and versatility, highlighting its value.
Abstract:Although generative AI has been successful in many areas, its ability to model geospatial data is still underexplored. Urban flow, a typical kind of geospatial data, is critical for a wide range of urban applications. Existing studies mostly focus on predictive modeling of urban flow that predicts the future flow based on historical flow data, which may be unavailable in data-sparse areas or newly planned regions. Some other studies aim to predict OD flow among regions but they fail to model dynamic changes of urban flow over time. In this work, we study a new problem of urban flow generation that generates dynamic urban flow for regions without historical flow data. To capture the effect of multiple factors on urban flow, such as region features and urban environment, we employ diffusion model to generate urban flow for regions under different conditions. We first construct an urban knowledge graph (UKG) to model the urban environment and relationships between regions, based on which we design a knowledge-enhanced spatio-temporal diffusion model (KSTDiff) to generate urban flow for each region. Specifically, to accurately generate urban flow for regions with different flow volumes, we design a novel diffusion process guided by a volume estimator, which is learnable and customized for each region. Moreover, we propose a knowledge-enhanced denoising network to capture the spatio-temporal dependencies of urban flow as well as the impact of urban environment in the denoising process. Extensive experiments on four real-world datasets validate the superiority of our model over state-of-the-art baselines in urban flow generation. Further in-depth studies demonstrate the utility of generated urban flow data and the ability of our model for long-term flow generation and urban flow prediction. Our code is released at: https://github.com/tsinghua-fib-lab/KSTDiff-Urban-flow-generation.
Abstract:Micro-videos platforms such as TikTok are extremely popular nowadays. One important feature is that users no longer select interested videos from a set, instead they either watch the recommended video or skip to the next one. As a result, the time length of users' watching behavior becomes the most important signal for identifying preferences. However, our empirical data analysis has shown a video-length effect that long videos are easier to receive a higher value of average view time, thus adopting such view-time labels for measuring user preferences can easily induce a biased model that favors the longer videos. In this paper, we propose a Video Length Debiasing Recommendation (VLDRec) method to alleviate such an effect for micro-video recommendation. VLDRec designs the data labeling approach and the sample generation module that better capture user preferences in a view-time oriented manner. It further leverages the multi-task learning technique to jointly optimize the above samples with original biased ones. Extensive experiments show that VLDRec can improve the users' view time by 1.81% and 11.32% on two real-world datasets, given a recommendation list of a fixed overall video length, compared with the best baseline method. Moreover, VLDRec is also more effective in matching users' interests in terms of the video content.
Abstract:Short-video recommendation is one of the most important recommendation applications in today's industrial information systems. Compared with other recommendation tasks, the enormous amount of feedback is the most typical characteristic. Specifically, in short-video recommendation, the easiest-to-collect user feedback is from the skipping behaviors, which leads to two critical challenges for the recommendation model. First, the skipping behavior reflects implicit user preferences, and thus it is challenging for interest extraction. Second, the kind of special feedback involves multiple objectives, such as total watching time, which is also very challenging. In this paper, we present our industrial solution in Kuaishou, which serves billion-level users every day. Specifically, we deploy a feedback-aware encoding module which well extracts user preference taking the impact of context into consideration. We further design a multi-objective prediction module which well distinguishes the relation and differences among different model objectives in the short-video recommendation. We conduct extensive online A/B testing, along with detailed and careful analysis, which verifies the effectiveness of our solution.
Abstract:Sequential recommendation is one of the most important tasks in recommender systems, which aims to recommend the next interacted item with historical behaviors as input. Traditional sequential recommendation always mainly considers the collected positive feedback such as click, purchase, etc. However, in short-video platforms such as TikTok, video viewing behavior may not always represent positive feedback. Specifically, the videos are played automatically, and users passively receive the recommended videos. In this new scenario, users passively express negative feedback by skipping over videos they do not like, which provides valuable information about their preferences. Different from the negative feedback studied in traditional recommender systems, this passive-negative feedback can reflect users' interests and serve as an important supervision signal in extracting users' preferences. Therefore, it is essential to carefully design and utilize it in this novel recommendation scenario. In this work, we first conduct analyses based on a large-scale real-world short-video behavior dataset and illustrate the significance of leveraging passive feedback. We then propose a novel method that deploys the sub-interest encoder, which incorporates positive feedback and passive-negative feedback as supervision signals to learn the user's current active sub-interest. Moreover, we introduce an adaptive fusion layer to integrate various sub-interests effectively. To enhance the robustness of our model, we then introduce a multi-task learning module to simultaneously optimize two kinds of feedback -- passive-negative feedback and traditional randomly-sampled negative feedback. The experiments on two large-scale datasets verify that the proposed method can significantly outperform state-of-the-art approaches. The code is released at https://github.com/tsinghua-fib-lab/RecSys2023-SINE.
Abstract:Graph Neural Network (GNN)-based models have become the mainstream approach for recommender systems. Despite the effectiveness, they are still suffering from the cold-start problem, i.e., recommend for few-interaction items. Existing GNN-based recommendation models to address the cold-start problem mainly focus on utilizing auxiliary features of users and items, leaving the user-item interactions under-utilized. However, embeddings distributions of cold and warm items are still largely different, since cold items' embeddings are learned from lower-popularity interactions, while warm items' embeddings are from higher-popularity interactions. Thus, there is a seesaw phenomenon, where the recommendation performance for the cold and warm items cannot be improved simultaneously. To this end, we proposed a Uncertainty-aware Consistency learning framework for Cold-start item recommendation (shorten as UCC) solely based on user-item interactions. Under this framework, we train the teacher model (generator) and student model (recommender) with consistency learning, to ensure the cold items with additionally generated low-uncertainty interactions can have similar distribution with the warm items. Therefore, the proposed framework improves the recommendation of cold and warm items at the same time, without hurting any one of them. Extensive experiments on benchmark datasets demonstrate that our proposed method significantly outperforms state-of-the-art methods on both warm and cold items, with an average performance improvement of 27.6%.
Abstract:Understanding and characterizing the vulnerability of urban infrastructures, which refers to the engineering facilities essential for the regular running of cities and that exist naturally in the form of networks, is of great value to us. Potential applications include protecting fragile facilities and designing robust topologies, etc. Due to the strong correlation between different topological characteristics and infrastructure vulnerability and their complicated evolution mechanisms, some heuristic and machine-assisted analysis fall short in addressing such a scenario. In this paper, we model the interdependent network as a heterogeneous graph and propose a system based on graph neural network with reinforcement learning, which can be trained on real-world data, to characterize the vulnerability of the city system accurately. The presented system leverages deep learning techniques to understand and analyze the heterogeneous graph, which enables us to capture the risk of cascade failure and discover vulnerable infrastructures of cities. Extensive experiments with various requests demonstrate not only the expressive power of our system but also transferring ability and necessity of the specific components.