Abstract:User sentiment on social media reveals the underlying social trends, crises, and needs. Researchers have analyzed users' past messages to trace the evolution of sentiments and reconstruct sentiment dynamics. However, predicting the imminent sentiment of an ongoing event is rarely studied. In this paper, we address the problem of \textbf{sentiment forecasting} on social media to predict the user's future sentiment in response to the development of the event. We extract sentiment-related features to enhance the modeling skill and propose a multi-perspective role-playing framework to simulate the process of human response. Our preliminary results show significant improvement in sentiment forecasting on both microscopic and macroscopic levels.
Abstract:Understanding what emotions images evoke in their viewers is a foundational goal in human-centric visual computing. While recent advances in vision-language models (VLMs) have shown promise for visual emotion analysis (VEA), several key challenges remain unresolved. Emotional cues in images are often abstract, overlapping, and entangled, making them difficult to model and interpret. Moreover, VLMs struggle to align these complex visual patterns with emotional semantics due to limited supervision and sparse emotional grounding. Finally, existing approaches lack structured affective knowledge to resolve ambiguity and ensure consistent emotional reasoning across diverse visual domains. To address these limitations, we propose \textbf{K-EVER\textsuperscript{2}}, a knowledge-enhanced framework for emotion reasoning and retrieval. Our approach introduces a semantically structured formulation of visual emotion cues and integrates external affective knowledge through multimodal alignment. Without relying on handcrafted labels or direct emotion supervision, K-EVER\textsuperscript{2} achieves robust and interpretable emotion predictions across heterogeneous image types. We validate our framework on three representative benchmarks, Emotion6, EmoSet, and M-Disaster, covering social media imagery, human-centric scenes, and disaster contexts. K-EVER\textsuperscript{2} consistently outperforms strong CNN and VLM baselines, achieving up to a \textbf{19\% accuracy gain} for specific emotions and a \textbf{12.3\% average accuracy gain} across all emotion categories. Our results demonstrate a scalable and generalizable solution for advancing emotional understanding of visual content.
Abstract:Long-term forecasting of chaotic systems from short-term observations remains a fundamental and underexplored challenge due to the intrinsic sensitivity to initial conditions and the complex geometry of strange attractors. Existing approaches often rely on long-term training data or focus on short-term sequence correlations, struggling to maintain predictive stability and dynamical coherence over extended horizons. We propose PhyxMamba, a novel framework that integrates a Mamba-based state-space model with physics-informed principles to capture the underlying dynamics of chaotic systems. By reconstructing the attractor manifold from brief observations using time-delay embeddings, PhyxMamba extracts global dynamical features essential for accurate forecasting. Our generative training scheme enables Mamba to replicate the physical process, augmented by multi-token prediction and attractor geometry regularization for physical constraints, enhancing prediction accuracy and preserving key statistical invariants. Extensive evaluations on diverse simulated and real-world chaotic systems demonstrate that PhyxMamba delivers superior long-term forecasting and faithfully captures essential dynamical invariants from short-term data. This framework opens new avenues for reliably predicting chaotic systems under observation-scarce conditions, with broad implications across climate science, neuroscience, epidemiology, and beyond. Our code is open-source at https://github.com/tsinghua-fib-lab/PhyxMamba.
Abstract:Combinatorial Optimization (CO) encompasses a wide range of problems that arise in many real-world scenarios. While significant progress has been made in developing learning-based methods for specialized CO problems, a unified model with a single architecture and parameter set for diverse CO problems remains elusive. Such a model would offer substantial advantages in terms of efficiency and convenience. In this paper, we introduce UniCO, a unified model for solving various CO problems. Inspired by the success of next-token prediction, we frame each problem-solving process as a Markov Decision Process (MDP), tokenize the corresponding sequential trajectory data, and train the model using a transformer backbone. To reduce token length in the trajectory data, we propose a CO-prefix design that aggregates static problem features. To address the heterogeneity of state and action tokens within the MDP, we employ a two-stage self-supervised learning approach. In this approach, a dynamic prediction model is first trained and then serves as a pre-trained model for subsequent policy generation. Experiments across 10 CO problems showcase the versatility of UniCO, emphasizing its ability to generalize to new, unseen problems with minimal fine-tuning, achieving even few-shot or zero-shot performance. Our framework offers a valuable complement to existing neural CO methods that focus on optimizing performance for individual problems.
Abstract:Accurate origin-destination (OD) flow prediction is of great importance to developing cities, as it can contribute to optimize urban structures and layouts. However, with the common issues of missing regional features and lacking OD flow data, it is quite daunting to predict OD flow in developing cities. To address this challenge, we propose a novel Causality-Enhanced OD Flow Prediction (CE-OFP), a unified framework that aims to transfer urban knowledge between cities and achieve accuracy improvements in OD flow predictions across data-scarce cities. In specific, we propose a novel reinforcement learning model to discover universal causalities among urban features in data-rich cities and build corresponding causal graphs. Then, we further build Causality-Enhanced Variational Auto-Encoder (CE-VAE) to incorporate causal graphs for effective feature reconstruction in data-scarce cities. Finally, with the reconstructed features, we devise a knowledge distillation method with a graph attention network to migrate the OD prediction model from data-rich cities to data-scare cities. Extensive experiments on two pairs of real-world datasets validate that the proposed CE-OFP remarkably outperforms state-of-the-art baselines, which can reduce the RMSE of OD flow prediction for data-scarce cities by up to 11%.
Abstract:User consumption behavior data, which records individuals' online spending history at various types of stores, has been widely used in various applications, such as store recommendation, site selection, and sale forecasting. However, its high worth is limited due to deficiencies in data comprehensiveness and changes of application scenarios. Thus, generating high-quality sequential consumption data by simulating complex user consumption behaviors is of great importance to real-world applications. Two branches of existing sequence generation methods are both limited in quality. Model-based methods with simplified assumptions fail to model the complex decision process of user consumption, while data-driven methods that emulate real-world data are prone to noises, unobserved behaviors, and dynamic decision space. In this work, we propose to enhance the fidelity and trustworthiness of the data-driven Generative Adversarial Imitation Learning (GAIL) method by blending it with the Exploration and Preferential Return EPR model . The core idea of our EPR-GAIL framework is to model user consumption behaviors as a complex EPR decision process, which consists of purchase, exploration, and preference decisions. Specifically, we design the hierarchical policy function in the generator as a realization of the EPR decision process and employ the probability distributions of the EPR model to guide the reward function in the discriminator. Extensive experiments on two real-world datasets of user consumption behaviors on an online platform demonstrate that the EPR-GAIL framework outperforms the best state-of-the-art baseline by over 19\% in terms of data fidelity. Furthermore, the generated consumption behavior data can improve the performance of sale prediction and location recommendation by up to 35.29% and 11.19%, respectively, validating its advantage for practical applications.
Abstract:To uncover the city's fundamental functioning mechanisms, it is important to acquire a deep understanding of complicated relationships among citizens, location, and mobility behaviors. Previous research studies have applied direct correlation analysis to investigate such relationships. Nevertheless, due to the ubiquitous confounding effects, empirical correlation analysis may not accurately reflect underlying causal relationships among basic urban elements. In this paper, we propose a novel urban causal computing framework to comprehensively explore causalities and confounding effects among a variety of factors across different types of urban elements. In particular, we design a reinforcement learning algorithm to discover the potential causal graph, which depicts the causal relations between urban factors. The causal graph further serves as the guidance for estimating causal effects between pair-wise urban factors by propensity score matching. After removing the confounding effects from correlations, we leverage significance levels of causal effects in downstream urban mobility prediction tasks. Experimental studies on open-source urban datasets show that the discovered causal graph demonstrates a hierarchical structure, where citizens affect locations, and they both cause changes in urban mobility behaviors. Experimental results in urban mobility prediction tasks further show that the proposed method can effectively reduce confounding effects and enhance performance of urban computing tasks.
Abstract:Energy landscapes play a crucial role in shaping dynamics of many real-world complex systems. System evolution is often modeled as particles moving on a landscape under the combined effect of energy-driven drift and noise-induced diffusion, where the energy governs the long-term motion of the particles. Estimating the energy landscape of a system has been a longstanding interdisciplinary challenge, hindered by the high operational costs or the difficulty of obtaining supervisory signals. Therefore, the question of how to infer the energy landscape in the absence of true energy values is critical. In this paper, we propose a physics-informed self-supervised learning method to learn the energy landscape from the evolution trajectories of the system. It first maps the system state from the observation space to a discrete landscape space by an adaptive codebook, and then explicitly integrates energy into the graph neural Fokker-Planck equation, enabling the joint learning of energy estimation and evolution prediction. Experimental results across interdisciplinary systems demonstrate that our estimated energy has a correlation coefficient above 0.9 with the ground truth, and evolution prediction accuracy exceeds the baseline by an average of 17.65\%. The code is available at github.com/tsinghua-fib-lab/PESLA.
Abstract:While large language models (LLMs) present significant potential for supporting numerous real-world applications and delivering positive social impacts, they still face significant challenges in terms of the inherent risk of privacy leakage, hallucinated outputs, and value misalignment, and can be maliciously used for generating toxic content and unethical purposes after been jailbroken. Therefore, in this survey, we present a comprehensive review of recent advancements aimed at mitigating these issues, organized across the four phases of LLM development and usage: data collecting and pre-training, fine-tuning and alignment, prompting and reasoning, and post-processing and auditing. We elaborate on the recent advances for enhancing the performance of LLMs in terms of privacy protection, hallucination reduction, value alignment, toxicity elimination, and jailbreak defenses. In contrast to previous surveys that focus on a single dimension of responsible LLMs, this survey presents a unified framework that encompasses these diverse dimensions, providing a comprehensive view of enhancing LLMs to better serve real-world applications.
Abstract:The increasing parameters and expansive dataset of large language models (LLMs) highlight the urgent demand for a technical solution to audit the underlying privacy risks and copyright issues associated with LLMs. Existing studies have partially addressed this need through an exploration of the pre-training data detection problem, which is an instance of a membership inference attack (MIA). This problem involves determining whether a given piece of text has been used during the pre-training phase of the target LLM. Although existing methods have designed various sophisticated MIA score functions to achieve considerable detection performance in pre-trained LLMs, how to achieve high-confidence detection and how to perform MIA on aligned LLMs remain challenging. In this paper, we propose MIA-Tuner, a novel instruction-based MIA method, which instructs LLMs themselves to serve as a more precise pre-training data detector internally, rather than design an external MIA score function. Furthermore, we design two instruction-based safeguards to respectively mitigate the privacy risks brought by the existing methods and MIA-Tuner. To comprehensively evaluate the most recent state-of-the-art LLMs, we collect a more up-to-date MIA benchmark dataset, named WIKIMIA-24, to replace the widely adopted benchmark WIKIMIA. We conduct extensive experiments across various aligned and unaligned LLMs over the two benchmark datasets. The results demonstrate that MIA-Tuner increases the AUC of MIAs from 0.7 to a significantly high level of 0.9.