Unsupervised domain adaptation (UDA) has witnessed remarkable advancements in improving the accuracy of models for unlabeled target domains. However, the calibration of predictive uncertainty in the target domain, a crucial aspect of the safe deployment of UDA models, has received limited attention. The conventional in-domain calibration method, \textit{temperature scaling} (TempScal), encounters challenges due to domain distribution shifts and the absence of labeled target domain data. Recent approaches have employed importance-weighting techniques to estimate the target-optimal temperature based on re-weighted labeled source data. Nonetheless, these methods require source data and suffer from unreliable density estimates under severe domain shifts, rendering them unsuitable for source-free UDA settings. To overcome these limitations, we propose PseudoCal, a source-free calibration method that exclusively relies on unlabeled target data. Unlike previous approaches that treat UDA calibration as a \textit{covariate shift} problem, we consider it as an unsupervised calibration problem specific to the target domain. Motivated by the factorization of the negative log-likelihood (NLL) objective in TempScal, we generate a labeled pseudo-target set that captures the structure of the real target. By doing so, we transform the unsupervised calibration problem into a supervised one, enabling us to effectively address it using widely-used in-domain methods like TempScal. Finally, we thoroughly evaluate the calibration performance of PseudoCal by conducting extensive experiments on 10 UDA methods, considering both traditional UDA settings and recent source-free UDA scenarios. The experimental results consistently demonstrate the superior performance of PseudoCal, exhibiting significantly reduced calibration error compared to existing calibration methods.
Source-free domain adaptation (SFDA) aims to adapt a pretrained model from a labeled source domain to an unlabeled target domain without access to the source domain data, preserving source domain privacy. Despite its prevalence in visual applications, SFDA is largely unexplored in time series applications. The existing SFDA methods that are mainly designed for visual applications may fail to handle the temporal dynamics in time series, leading to impaired adaptation performance. To address this challenge, this paper presents a simple yet effective approach for source-free domain adaptation on time series data, namely MAsk and imPUte (MAPU). First, to capture temporal information of the source domain, our method performs random masking on the time series signals while leveraging a novel temporal imputer to recover the original signal from a masked version in the embedding space. Second, in the adaptation step, the imputer network is leveraged to guide the target model to produce target features that are temporally consistent with the source features. To this end, our MAPU can explicitly account for temporal dependency during the adaptation while avoiding the imputation in the noisy input space. Our method is the first to handle temporal consistency in SFDA for time series data and can be seamlessly equipped with other existing SFDA methods. Extensive experiments conducted on three real-world time series datasets demonstrate that our MAPU achieves significant performance gain over existing methods. Our code is available at \url{https://github.com/mohamedr002/MAPU_SFDA_TS}.
In collaborative learning with streaming data, nodes (e.g., organizations) jointly and continuously learn a machine learning (ML) model by sharing the latest model updates computed from their latest streaming data. For the more resourceful nodes to be willing to share their model updates, they need to be fairly incentivized. This paper explores an incentive design that guarantees fairness so that nodes receive rewards commensurate to their contributions. Our approach leverages an explore-then-exploit formulation to estimate the nodes' contributions (i.e., exploration) for realizing our theoretically guaranteed fair incentives (i.e., exploitation). However, we observe a "rich get richer" phenomenon arising from the existing approaches to guarantee fairness and it discourages the participation of the less resourceful nodes. To remedy this, we additionally preserve asymptotic equality, i.e., less resourceful nodes achieve equal performance eventually to the more resourceful/"rich" nodes. We empirically demonstrate in two settings with real-world streaming data: federated online incremental learning and federated reinforcement learning, that our proposed approach outperforms existing baselines in fairness and learning performance while remaining competitive in preserving equality.
Current methods for few-shot segmentation (FSSeg) have mainly focused on improving the performance of novel classes while neglecting the performance of base classes. To overcome this limitation, the task of generalized few-shot semantic segmentation (GFSSeg) has been introduced, aiming to predict segmentation masks for both base and novel classes. However, the current prototype-based methods do not explicitly consider the relationship between base and novel classes when updating prototypes, leading to a limited performance in identifying true categories. To address this challenge, we propose a class contrastive loss and a class relationship loss to regulate prototype updates and encourage a large distance between prototypes from different classes, thus distinguishing the classes from each other while maintaining the performance of the base classes. Our proposed approach achieves new state-of-the-art performance for the generalized few-shot segmentation task on PASCAL VOC and MS COCO datasets.
Recent work has empirically shown that deep neural networks latch on to the Fourier statistics of training data and show increased sensitivity to Fourier-basis directions in the input. Understanding and modifying this Fourier-sensitivity of computer vision models may help improve their robustness. Hence, in this paper we study the frequency sensitivity characteristics of deep neural networks using a principled approach. We first propose a basis trick, proving that unitary transformations of the input-gradient of a function can be used to compute its gradient in the basis induced by the transformation. Using this result, we propose a general measure of any differentiable model's Fourier-sensitivity using the unitary Fourier-transform of its input-gradient. When applied to deep neural networks, we find that computer vision models are consistently sensitive to particular frequencies dependent on the dataset, training method and architecture. Based on this measure, we further propose a Fourier-regularization framework to modify the Fourier-sensitivities and frequency bias of models. Using our proposed regularizer-family, we demonstrate that deep neural networks obtain improved classification accuracy on robustness evaluations.
Source-free domain adaptation aims to adapt a source model trained on fully-labeled source domain data to a target domain with unlabeled target domain data. Source data is assumed inaccessible due to proprietary or privacy reasons. Existing works use the source model to pseudolabel target data, but the pseudolabels are unreliable due to data distribution shift between source and target domain. In this work, we propose to leverage an ImageNet pre-trained feature extractor in a new co-learning framework to improve target pseudolabel quality for finetuning the source model. Benefits of the ImageNet feature extractor include that it is not source-biased and it provides an alternate view of features and classification decisions different from the source model. Such pre-trained feature extractors are also publicly available, which allows us to readily leverage modern network architectures that have strong representation learning ability. After co-learning, we sharpen predictions of non-pseudolabeled samples by entropy minimization. Evaluation on 3 benchmark datasets show that our proposed method can outperform existing source-free domain adaptation methods, as well as unsupervised domain adaptation methods which assume joint access to source and target data.
Pruning neural networks has become popular in the last decade when it was shown that a large number of weights can be safely removed from modern neural networks without compromising accuracy. Numerous pruning methods have been proposed since then, each claiming to be better than the previous. Many state-of-the-art (SOTA) techniques today rely on complex pruning methodologies utilizing importance scores, getting feedback through back-propagation or having heuristics-based pruning rules amongst others. We question this pattern of introducing complexity in order to achieve better pruning results. We benchmark these SOTA techniques against Global Magnitude Pruning (Global MP), a naive pruning baseline, to evaluate whether complexity is really needed to achieve higher performance. Global MP ranks weights in order of their magnitudes and prunes the smallest ones. Hence, in its vanilla form, it is one of the simplest pruning techniques. Surprisingly, we find that vanilla Global MP outperforms all the other SOTA techniques and achieves a new SOTA result. It also achieves good performance on FLOPs sparsification, which we find is enhanced, when pruning is conducted in a gradual fashion. We also find that Global MP is generalizable across tasks, datasets and models with superior performance. Moreover, a common issue that many pruning algorithms run into at high sparsity rates, namely, layer-collapse, can be easily fixed in Global MP by setting a minimum threshold of weights to be retained in each layer. Lastly, unlike many other SOTA techniques, Global MP does not require any additional algorithm specific hyper-parameters and is very straightforward to tune and implement. We showcase our findings on various models (WRN-28-8, ResNet-32, ResNet-50, MobileNet-V1 and FastGRNN) and multiple datasets (CIFAR-10, ImageNet and HAR-2). Code is available at https://github.com/manasgupta-1/GlobalMP.
Domain generalization methods aim to learn models robust to domain shift with data from a limited number of source domains and without access to target domain samples during training. Popular domain alignment methods for domain generalization seek to extract domain-invariant features by minimizing the discrepancy between feature distributions across all domains, disregarding inter-domain relationships. In this paper, we instead propose a novel representation learning methodology that selectively enforces prediction consistency between source domains estimated to be closely-related. Specifically, we hypothesize that domains share different class-informative representations, so instead of aligning all domains which can cause negative transfer, we only regularize the discrepancy between closely-related domains. We apply our method to time-series classification tasks and conduct comprehensive experiments on three public real-world datasets. Our method significantly improves over the baseline and achieves better or competitive performance in comparison with state-of-the-art methods in terms of both accuracy and model calibration.
Deep networks are prone to performance degradation when there is a domain shift between the source (training) data and target (test) data. Recent test-time adaptation methods update batch normalization layers of pre-trained source models deployed in new target environments with streaming data to mitigate such performance degradation. Although such methods can adapt on-the-fly without first collecting a large target domain dataset, their performance is dependent on streaming conditions such as mini-batch size and class-distribution, which can be unpredictable in practice. In this work, we propose a framework for few-shot domain adaptation to address the practical challenges of data-efficient adaptation. Specifically, we propose a constrained optimization of feature normalization statistics in pre-trained source models supervised by a small support set from the target domain. Our method is easy to implement and improves source model performance with as few as one sample per class for classification tasks. Extensive experiments on 5 cross-domain classification and 4 semantic segmentation datasets show that our method achieves more accurate and reliable performance than test-time adaptation, while not being constrained by streaming conditions.
Recent work on curvilinear structure segmentation has mostly focused on backbone network design and loss engineering. The challenge of collecting labelled data, an expensive and labor intensive process, has been overlooked. While labelled data is expensive to obtain, unlabelled data is often readily available. In this work, we propose SemiCurv, a semi-supervised learning (SSL) framework for curvilinear structure segmentation that is able to utilize such unlabelled data to reduce the labelling burden. Our framework addresses two key challenges in formulating curvilinear segmentation in a semi-supervised manner. First, to fully exploit the power of consistency based SSL, we introduce a geometric transformation as strong data augmentation and then align segmentation predictions via a differentiable inverse transformation to enable the computation of pixel-wise consistency. Second, the traditional mean square error (MSE) on unlabelled data is prone to collapsed predictions and this issue exacerbates with severe class imbalance (significantly more background pixels). We propose a N-pair consistency loss to avoid trivial predictions on unlabelled data. We evaluate SemiCurv on six curvilinear segmentation datasets, and find that with no more than 5% of the labelled data, it achieves close to 95% of the performance relative to its fully supervised counterpart.