Abstract:Vision-Language-Action (VLA) models, particularly diffusion-based architectures, demonstrate transformative potential for embodied intelligence but are severely hampered by high computational and memory demands stemming from extensive inherent and inference-time redundancies. While existing acceleration efforts often target isolated inefficiencies, such piecemeal solutions typically fail to holistically address the varied computational and memory bottlenecks across the entire VLA pipeline, thereby limiting practical deployability. We introduce EfficientVLA, a structured and training-free inference acceleration framework that systematically eliminates these barriers by cohesively exploiting multifaceted redundancies. EfficientVLA synergistically integrates three targeted strategies: (1) pruning of functionally inconsequential layers from the language module, guided by an analysis of inter-layer redundancies; (2) optimizing the visual processing pathway through a task-aware strategy that selects a compact, diverse set of visual tokens, balancing task-criticality with informational coverage; and (3) alleviating temporal computational redundancy within the iterative diffusion-based action head by strategically caching and reusing key intermediate features. We apply our method to a standard VLA model CogACT, yielding a 1.93X inference speedup and reduces FLOPs to 28.9%, with only a 0.6% success rate drop in the SIMPLER benchmark.
Abstract:Collecting demonstrations enriched with fine-grained tactile information is critical for dexterous manipulation, particularly in contact-rich tasks that require precise force control and physical interaction. While prior works primarily focus on teleoperation or video-based retargeting, they often suffer from kinematic mismatches and the absence of real-time tactile feedback, hindering the acquisition of high-fidelity tactile data. To mitigate this issue, we propose KineDex, a hand-over-hand kinesthetic teaching paradigm in which the operator's motion is directly transferred to the dexterous hand, enabling the collection of physically grounded demonstrations enriched with accurate tactile feedback. To resolve occlusions from human hand, we apply inpainting technique to preprocess the visual observations. Based on these demonstrations, we then train a visuomotor policy using tactile-augmented inputs and implement force control during deployment for precise contact-rich manipulation. We evaluate KineDex on a suite of challenging contact-rich manipulation tasks, including particularly difficult scenarios such as squeezing toothpaste onto a toothbrush, which require precise multi-finger coordination and stable force regulation. Across these tasks, KineDex achieves an average success rate of 74.4%, representing a 57.7% improvement over the variant without force control. Comparative experiments with teleoperation and user studies further validate the advantages of KineDex in data collection efficiency and operability. Specifically, KineDex collects data over twice as fast as teleoperation across two tasks of varying difficulty, while maintaining a near-100% success rate, compared to under 50% for teleoperation.
Abstract:Following its success in natural language processing and computer vision, foundation models that are pre-trained on large-scale multi-task datasets have also shown great potential in robotics. However, most existing robot foundation models rely solely on 2D image observations, ignoring 3D geometric information, which is essential for robots to perceive and reason about the 3D world. In this paper, we introduce FP3, a first large-scale 3D foundation policy model for robotic manipulation. FP3 builds on a scalable diffusion transformer architecture and is pre-trained on 60k trajectories with point cloud observations. With the model design and diverse pre-training data, FP3 can be efficiently fine-tuned for downstream tasks while exhibiting strong generalization capabilities. Experiments on real robots demonstrate that with only 80 demonstrations, FP3 is able to learn a new task with over 90% success rates in novel environments with unseen objects, significantly surpassing existing robot foundation models.
Abstract:Conformal prediction is widely adopted in uncertainty quantification, due to its post-hoc, distribution-free, and model-agnostic properties. In the realm of modern deep learning, researchers have proposed Feature Conformal Prediction (FCP), which deploys conformal prediction in a feature space, yielding reduced band lengths. However, the practical utility of FCP is limited due to the time-consuming non-linear operations required to transform confidence bands from feature space to output space. In this paper, we introduce Fast Feature Conformal Prediction (FFCP), which features a novel non-conformity score and is convenient for practical applications. FFCP serves as a fast version of FCP, in that it equivalently employs a Taylor expansion to approximate the aforementioned non-linear operations in FCP. Empirical validations showcase that FFCP performs comparably with FCP (both outperforming the vanilla version) while achieving a significant reduction in computational time by approximately 50x. The code is available at https://github.com/ElvisWang1111/FastFeatureCP
Abstract:Data scaling has revolutionized fields like natural language processing and computer vision, providing models with remarkable generalization capabilities. In this paper, we investigate whether similar data scaling laws exist in robotics, particularly in robotic manipulation, and whether appropriate data scaling can yield single-task robot policies that can be deployed zero-shot for any object within the same category in any environment. To this end, we conduct a comprehensive empirical study on data scaling in imitation learning. By collecting data across numerous environments and objects, we study how a policy's generalization performance changes with the number of training environments, objects, and demonstrations. Throughout our research, we collect over 40,000 demonstrations and execute more than 15,000 real-world robot rollouts under a rigorous evaluation protocol. Our findings reveal several intriguing results: the generalization performance of the policy follows a roughly power-law relationship with the number of environments and objects. The diversity of environments and objects is far more important than the absolute number of demonstrations; once the number of demonstrations per environment or object reaches a certain threshold, additional demonstrations have minimal effect. Based on these insights, we propose an efficient data collection strategy. With four data collectors working for one afternoon, we collect sufficient data to enable the policies for two tasks to achieve approximately 90% success rates in novel environments with unseen objects.
Abstract:Spatial relationships between objects represent key scene information for humans to understand and interact with the world. To study the capability of current computer vision systems to recognize physically grounded spatial relations, we start by proposing precise relation definitions that permit consistently annotating a benchmark dataset. Despite the apparent simplicity of this task relative to others in the recognition literature, we observe that existing approaches perform poorly on this benchmark. We propose new approaches exploiting the long-range attention capabilities of transformers for this task, and evaluating key design principles. We identify a simple "RelatiViT" architecture and demonstrate that it outperforms all current approaches. To our knowledge, this is the first method to convincingly outperform naive baselines on spatial relation prediction in in-the-wild settings. The code and datasets are available in \url{https://sites.google.com/view/spatial-relation}.
Abstract:We address the challenge of acquiring real-world manipulation skills with a scalable framework.Inspired by the success of large-scale auto-regressive prediction in Large Language Models (LLMs), we hold the belief that identifying an appropriate prediction target capable of leveraging large-scale datasets is crucial for achieving efficient and universal learning. Therefore, we propose to utilize flow, which represents the future trajectories of 3D points on objects of interest, as an ideal prediction target in robot learning. To exploit scalable data resources, we turn our attention to cross-embodiment datasets. We develop, for the first time, a language-conditioned prediction model directly from large-scale RGBD human video datasets. Our predicted flow offers actionable geometric and physics guidance, thus facilitating stable zero-shot skill transfer in real-world scenarios.We deploy our method with a policy based on closed-loop flow prediction. Remarkably, without any additional training, our method achieves an impressive 81% success rate in human-to-robot skill transfer, covering 18 tasks in 6 scenes. Our framework features the following benefits: (1) scalability: leveraging cross-embodiment data resources; (2) universality: multiple object categories, including rigid, articulated, and soft bodies; (3) stable skill transfer: providing actionable guidance with a small inference domain-gap. These lead to a new pathway towards scalable general robot learning. Data, code, and model weights will be made publicly available.
Abstract:Learning from demonstration is a powerful method for teaching robots new skills, and more demonstration data often improves policy learning. However, the high cost of collecting demonstration data is a significant bottleneck. Videos, as a rich data source, contain knowledge of behaviors, physics, and semantics, but extracting control-specific information from them is challenging due to the lack of action labels. In this work, we introduce a novel framework, Any-point Trajectory Modeling (ATM), that utilizes video demonstrations by pre-training a trajectory model to predict future trajectories of arbitrary points within a video frame. Once trained, these trajectories provide detailed control guidance, enabling the learning of robust visuomotor policies with minimal action-labeled data. Our method's effectiveness is demonstrated across 130 simulation tasks, focusing on language-conditioned manipulation tasks. Visualizations and code are available at: \url{https://xingyu-lin.github.io/atm}.
Abstract:Humans often acquire new skills through observation and imitation. For robotic agents, learning from the plethora of unlabeled video demonstration data available on the Internet necessitates imitating the expert without access to its action, presenting a challenge known as Imitation Learning from Observations (ILfO). A common approach to tackle ILfO problems is to convert them into inverse reinforcement learning problems, utilizing a proxy reward computed from the agent's and the expert's observations. Nonetheless, we identify that tasks characterized by a progress dependency property pose significant challenges for such approaches; in these tasks, the agent needs to initially learn the expert's preceding behaviors before mastering the subsequent ones. Our investigation reveals that the main cause is that the reward signals assigned to later steps hinder the learning of initial behaviors. To address this challenge, we present a novel ILfO framework that enables the agent to master earlier behaviors before advancing to later ones. We introduce an Automatic Discount Scheduling (ADS) mechanism that adaptively alters the discount factor in reinforcement learning during the training phase, prioritizing earlier rewards initially and gradually engaging later rewards only when the earlier behaviors have been mastered. Our experiments, conducted on nine Meta-World tasks, demonstrate that our method significantly outperforms state-of-the-art methods across all tasks, including those that are unsolvable by them.
Abstract:Imagining the future trajectory is the key for robots to make sound planning and successfully reach their goals. Therefore, text-conditioned video prediction (TVP) is an essential task to facilitate general robot policy learning, i.e., predicting future video frames with a given language instruction and reference frames. It is a highly challenging task to ground task-level goals specified by instructions and high-fidelity frames together, requiring large-scale data and computation. To tackle this task and empower robots with the ability to foresee the future, we propose a sample and computation-efficient model, named \textbf{Seer}, by inflating the pretrained text-to-image (T2I) stable diffusion models along the temporal axis. We inflate the denoising U-Net and language conditioning model with two novel techniques, Autoregressive Spatial-Temporal Attention and Frame Sequential Text Decomposer, to propagate the rich prior knowledge in the pretrained T2I models across the frames. With the well-designed architecture, Seer makes it possible to generate high-fidelity, coherent, and instruction-aligned video frames by fine-tuning a few layers on a small amount of data. The experimental results on Something Something V2 (SSv2) and Bridgedata datasets demonstrate our superior video prediction performance with around 210-hour training on 4 RTX 3090 GPUs: decreasing the FVD of the current SOTA model from 290 to 200 on SSv2 and achieving at least 70\% preference in the human evaluation.