Abstract:Generating semantically and temporally aligned audio content in accordance with video input has become a focal point for researchers, particularly following the remarkable breakthrough in text-to-video generation. In this work, we aim to offer insights into the video-to-audio generation paradigm, focusing on three crucial aspects: vision encoders, auxiliary embeddings, and data augmentation techniques. Beginning with a foundational model VTA-LDM built on a simple yet surprisingly effective intuition, we explore various vision encoders and auxiliary embeddings through ablation studies. Employing a comprehensive evaluation pipeline that emphasizes generation quality and video-audio synchronization alignment, we demonstrate that our model exhibits state-of-the-art video-to-audio generation capabilities. Furthermore, we provide critical insights into the impact of different data augmentation methods on enhancing the generation framework's overall capacity. We showcase possibilities to advance the challenge of generating synchronized audio from semantic and temporal perspectives. We hope these insights will serve as a stepping stone toward developing more realistic and accurate audio-visual generation models.
Abstract:Foundation models (FMs) are revolutionizing the analysis and understanding of remote sensing (RS) scenes, including aerial RGB, multispectral, and SAR images. However, hyperspectral images (HSIs), which are rich in spectral information, have not seen much application of FMs, with existing methods often restricted to specific tasks and lacking generality. To fill this gap, we introduce HyperSIGMA, a vision transformer-based foundation model for HSI interpretation, scalable to over a billion parameters. To tackle the spectral and spatial redundancy challenges in HSIs, we introduce a novel sparse sampling attention (SSA) mechanism, which effectively promotes the learning of diverse contextual features and serves as the basic block of HyperSIGMA. HyperSIGMA integrates spatial and spectral features using a specially designed spectral enhancement module. In addition, we construct a large-scale hyperspectral dataset, HyperGlobal-450K, for pre-training, which contains about 450K hyperspectral images, significantly surpassing existing datasets in scale. Extensive experiments on various high-level and low-level HSI tasks demonstrate HyperSIGMA's versatility and superior representational capability compared to current state-of-the-art methods. Moreover, HyperSIGMA shows significant advantages in scalability, robustness, cross-modal transferring capability, and real-world applicability.
Abstract:In short video and live broadcasts, speech, singing voice, and background music often overlap and obscure each other. This complexity creates difficulties in structuring and recognizing the audio content, which may impair subsequent ASR and music understanding applications. This paper proposes a multi-task audio source separation (MTASS) based ASR model called JRSV, which Jointly Recognizes Speech and singing Voices. Specifically, the MTASS module separates the mixed audio into distinct speech and singing voice tracks while removing background music. The CTC/attention hybrid recognition module recognizes both tracks. Online distillation is proposed to improve the robustness of recognition further. To evaluate the proposed methods, a benchmark dataset is constructed and released. Experimental results demonstrate that JRSV can significantly improve recognition accuracy on each track of the mixed audio.
Abstract:In the past year, MultiModal Large Language Models (MM-LLMs) have undergone substantial advancements, augmenting off-the-shelf LLMs to support MM inputs or outputs via cost-effective training strategies. The resulting models not only preserve the inherent reasoning and decision-making capabilities of LLMs but also empower a diverse range of MM tasks. In this paper, we provide a comprehensive survey aimed at facilitating further research of MM-LLMs. Specifically, we first outline general design formulations for model architecture and training pipeline. Subsequently, we provide brief introductions of $26$ existing MM-LLMs, each characterized by its specific formulations. Additionally, we review the performance of MM-LLMs on mainstream benchmarks and summarize key training recipes to enhance the potency of MM-LLMs. Lastly, we explore promising directions for MM-LLMs while concurrently maintaining a real-time tracking website for the latest developments in the field. We hope that this survey contributes to the ongoing advancement of the MM-LLMs domain.
Abstract:The audio source separation tasks, such as speech enhancement, speech separation, and music source separation, have achieved impressive performance in recent studies. The powerful modeling capabilities of deep neural networks give us hope for more challenging tasks. This paper launches a new multi-task audio source separation (MTASS) challenge to separate the speech, music, and noise signals from the monaural mixture. First, we introduce the details of this task and generate a dataset of mixtures containing speech, music, and background noises. Then, we propose an MTASS model in the complex domain to fully utilize the differences in spectral characteristics of the three audio signals. In detail, the proposed model follows a two-stage pipeline, which separates the three types of audio signals and then performs signal compensation separately. After comparing different training targets, the complex ratio mask is selected as a more suitable target for the MTASS. The experimental results also indicate that the residual signal compensation module helps to recover the signals further. The proposed model shows significant advantages in separation performance over several well-known separation models.
Abstract:Most speech separation methods, trying to separate all channel sources simultaneously, are still far from having enough general- ization capabilities for real scenarios where the number of input sounds is usually uncertain and even dynamic. In this work, we employ ideas from auditory attention with two ears and propose a speaker and direction inferred speech separation network (dubbed SDNet) to solve the cocktail party problem. Specifically, our SDNet first parses out the respective perceptual representations with their speaker and direction characteristics from the mixture of the scene in a sequential manner. Then, the perceptual representations are utilized to attend to each corresponding speech. Our model gener- ates more precise perceptual representations with the help of spatial features and successfully deals with the problem of the unknown number of sources and the selection of outputs. The experiments on standard fully-overlapped speech separation benchmarks, WSJ0- 2mix, WSJ0-3mix, and WSJ0-2&3mix, show the effectiveness, and our method achieves SDR improvements of 25.31 dB, 17.26 dB, and 21.56 dB under anechoic settings. Our codes will be released at https://github.com/aispeech-lab/SDNet.
Abstract:In this paper, we propose a single-channel speech dereverberation system (DeReGAT) based on convolutional, bidirectional long short-term memory and deep feed-forward neural network (CBLDNN) with generative adversarial training (GAT). In order to obtain better speech quality instead of only minimizing a mean square error (MSE), GAT is employed to make the dereverberated speech indistinguishable form the clean samples. Besides, our system can deal with wide range reverberation and be well adapted to variant environments. The experimental results show that the proposed model outperforms weighted prediction error (WPE) and deep neural network-based systems. In addition, DeReGAT is extended to an online speech dereverberation scenario, which reports comparable performance with the offline case.