Abstract:In the current era of Artificial Intelligence Generated Content (AIGC), a Low-Rank Adaptation (LoRA) method has emerged. It uses a plugin-based approach to learn new knowledge with lower parameter quantities and computational costs, and it can be plugged in and out based on the specific sub-tasks, offering high flexibility. However, the current application schemes primarily incorporate LoRA into the pre-introduced conditional parts of the speech models. This fixes the position of LoRA, limiting the flexibility and scalability of its application. Therefore, we propose the Exploring Efficient and Extensible LoRA Integration in Emotional Text-to-Speech (EELE) method. Starting from a general neutral speech model, we do not pre-introduce emotional information but instead use the LoRA plugin to design a flexible adaptive scheme that endows the model with emotional generation capabilities. Specifically, we initially train the model using only neutral speech data. After training is complete, we insert LoRA into different modules and fine-tune the model with emotional speech data to find the optimal insertion scheme. Through experiments, we compare and test the effects of inserting LoRA at different positions within the model and assess LoRA's ability to learn various emotions, effectively proving the validity of our method. Additionally, we explore the impact of the rank size of LoRA and the difference compared to directly fine-tuning the entire model.
Abstract:In the field of deepfake detection, previous studies focus on using reconstruction or mask and prediction methods to train pre-trained models, which are then transferred to fake audio detection training where the encoder is used to extract features, such as wav2vec2.0 and Masked Auto Encoder. These methods have proven that using real audio for reconstruction pre-training can better help the model distinguish fake audio. However, the disadvantage lies in poor interpretability, meaning it is hard to intuitively present the differences between deepfake and real audio. This paper proposes a noval feature extraction method via color quantisation which constrains the reconstruction to use a limited number of colors for the spectral image-like input. The proposed method ensures reconstructed input differs from the original, which allows for intuitive observation of the focus areas in the spectral reconstruction. Experiments conducted on the ASVspoof2019 dataset demonstrate that the proposed method achieves better classification performance compared to using the original spectral as input and pretraining the recolor network can also benefit the fake audio detection.
Abstract:Deception detection has garnered increasing attention in recent years due to the significant growth of digital media and heightened ethical and security concerns. It has been extensively studied using multimodal methods, including video, audio, and text. In addition, individual differences in deception production and detection are believed to play a crucial role.Although some studies have utilized individual information such as personality traits to enhance the performance of deception detection, current systems remain limited, partly due to a lack of sufficient datasets for evaluating performance. To address this issue, we introduce a multimodal deception dataset MDPE. Besides deception features, this dataset also includes individual differences information in personality and emotional expression characteristics. It can explore the impact of individual differences on deception behavior. It comprises over 104 hours of deception and emotional videos from 193 subjects. Furthermore, we conducted numerous experiments to provide valuable insights for future deception detection research. MDPE not only supports deception detection, but also provides conditions for tasks such as personality recognition and emotion recognition, and can even study the relationships between them. We believe that MDPE will become a valuable resource for promoting research in the field of affective computing.
Abstract:Speaker adaptation, which involves cloning voices from unseen speakers in the Text-to-Speech task, has garnered significant interest due to its numerous applications in multi-media fields. Despite recent advancements, existing methods often struggle with inadequate speaker representation accuracy and overfitting, particularly in limited reference speeches scenarios. To address these challenges, we propose an Agile Speaker Representation Reinforcement Learning strategy to enhance speaker similarity in speaker adaptation tasks. ASRRL is the first work to apply reinforcement learning to improve the modeling accuracy of speaker embeddings in speaker adaptation, addressing the challenge of decoupling voice content and timbre. Our approach introduces two action strategies tailored to different reference speeches scenarios. In the single-sentence scenario, a knowledge-oriented optimal routine searching RL method is employed to expedite the exploration and retrieval of refinement information on the fringe of speaker representations. In the few-sentence scenario, we utilize a dynamic RL method to adaptively fuse reference speeches, enhancing the robustness and accuracy of speaker modeling. To achieve optimal results in the target domain, a multi-scale fusion scoring mechanism based reward model that evaluates speaker similarity, speech quality, and intelligibility across three dimensions is proposed, ensuring that improvements in speaker similarity do not compromise speech quality or intelligibility. The experimental results on the LibriTTS and VCTK datasets within mainstream TTS frameworks demonstrate the extensibility and generalization capabilities of the proposed ASRRL method. The results indicate that the ASRRL method significantly outperforms traditional fine-tuning approaches, achieving higher speaker similarity and better overall speech quality with limited reference speeches.
Abstract:Foley audio, critical for enhancing the immersive experience in multimedia content, faces significant challenges in the AI-generated content (AIGC) landscape. Despite advancements in AIGC technologies for text and image generation, the foley audio dubbing remains rudimentary due to difficulties in cross-modal scene matching and content correlation. Current text-to-audio technology, which relies on detailed and acoustically relevant textual descriptions, falls short in practical video dubbing applications. Existing datasets like AudioSet, AudioCaps, Clotho, Sound-of-Story, and WavCaps do not fully meet the requirements for real-world foley audio dubbing task. To address this, we introduce the Multi-modal Image and Narrative Text Dubbing Dataset (MINT), designed to enhance mainstream dubbing tasks such as literary story audiobooks dubbing, image/silent video dubbing. Besides, to address the limitations of existing TTA technology in understanding and planning complex prompts, a Foley Audio Content Planning, Generation, and Alignment (CPGA) framework is proposed, which includes a content planning module leveraging large language models for complex multi-modal prompts comprehension. Additionally, the training process is optimized using Proximal Policy Optimization based reinforcement learning, significantly improving the alignment and auditory realism of generated foley audio. Experimental results demonstrate that our approach significantly advances the field of foley audio dubbing, providing robust solutions for the challenges of multi-modal dubbing. Even when utilizing the relatively lightweight GPT-2 model, our framework outperforms open-source multimodal large models such as LLaVA, DeepSeek-VL, and Moondream2. The dataset is available at https://github.com/borisfrb/MINT .
Abstract:With the proliferation of Large Language Model (LLM) based deepfake audio, there is an urgent need for effective detection methods. Previous deepfake audio generation methods typically involve a multi-step generation process, with the final step using a vocoder to predict the waveform from handcrafted features. However, LLM-based audio is directly generated from discrete neural codecs in an end-to-end generation process, skipping the final step of vocoder processing. This poses a significant challenge for current audio deepfake detection (ADD) models based on vocoder artifacts. To effectively detect LLM-based deepfake audio, we focus on the core of the generation process, the conversion from neural codec to waveform. We propose Codecfake dataset, which is generated by seven representative neural codec methods. Experiment results show that codec-trained ADD models exhibit a 41.406% reduction in average equal error rate compared to vocoder-trained ADD models on the Codecfake test set.
Abstract:Text-to-Audio (TTA) aims to generate audio that corresponds to the given text description, playing a crucial role in media production. The text descriptions in TTA datasets lack rich variations and diversity, resulting in a drop in TTA model performance when faced with complex text. To address this issue, we propose a method called Portable Plug-in Prompt Refiner, which utilizes rich knowledge about textual descriptions inherent in large language models to effectively enhance the robustness of TTA acoustic models without altering the acoustic training set. Furthermore, a Chain-of-Thought that mimics human verification is introduced to enhance the accuracy of audio descriptions, thereby improving the accuracy of generated content in practical applications. The experiments show that our method achieves a state-of-the-art Inception Score (IS) of 8.72, surpassing AudioGen, AudioLDM and Tango.
Abstract:Although current fake audio detection approaches have achieved remarkable success on specific datasets, they often fail when evaluated with datasets from different distributions. Previous studies typically address distribution shift by focusing on using extra data or applying extra loss restrictions during training. However, these methods either require a substantial amount of data or complicate the training process. In this work, we propose a stable learning-based training scheme that involves a Sample Weight Learning (SWL) module, addressing distribution shift by decorrelating all selected features via learning weights from training samples. The proposed portable plug-in-like SWL is easy to apply to multiple base models and generalizes them without using extra data during training. Experiments conducted on the ASVspoof datasets clearly demonstrate the effectiveness of SWL in generalizing different models across three evaluation datasets from different distributions.
Abstract:The generalization of Fake Audio Detection (FAD) is critical due to the emergence of new spoofing techniques. Traditional FAD methods often focus solely on distinguishing between genuine and known spoofed audio. We propose a Genuine-Focused Learning (GFL) framework guided, aiming for highly generalized FAD, called GFL-FAD. This method incorporates a Counterfactual Reasoning Enhanced Representation (CRER) based on audio reconstruction using the Mask AutoEncoder (MAE) architecture to accurately model genuine audio features. To reduce the influence of spoofed audio during training, we introduce a genuine audio reconstruction loss, maintaining the focus on learning genuine data features. In addition, content-related bottleneck (BN) features are extracted from the MAE to supplement the knowledge of the original audio. These BN features are adaptively fused with CRER to further improve robustness. Our method achieves state-of-the-art performance with an EER of 0.25% on ASVspoof2019 LA.
Abstract:The autoregressive (AR) models, such as attention-based encoder-decoder models and RNN-Transducer, have achieved great success in speech recognition. They predict the output sequence conditioned on the previous tokens and acoustic encoded states, which is inefficient on GPUs. The non-autoregressive (NAR) models can get rid of the temporal dependency between the output tokens and predict the entire output tokens in at least one step. However, the NAR model still faces two major problems. On the one hand, there is still a great gap in performance between the NAR models and the advanced AR models. On the other hand, it's difficult for most of the NAR models to train and converge. To address these two problems, we propose a new model named the two-step non-autoregressive transformer(TSNAT), which improves the performance and accelerating the convergence of the NAR model by learning prior knowledge from a parameters-sharing AR model. Furthermore, we introduce the two-stage method into the inference process, which improves the model performance greatly. All the experiments are conducted on a public Chinese mandarin dataset ASIEHLL-1. The results show that the TSNAT can achieve a competitive performance with the AR model and outperform many complicated NAR models.