Abstract:Convolutional neural networks excel in histopathological image classification, yet their pixel-level focus hampers explainability. Conversely, emerging graph convolutional networks spotlight cell-level features and medical implications. However, limited by their shallowness and suboptimal use of high-dimensional pixel data, GCNs underperform in multi-class histopathological image classification. To make full use of pixel-level and cell-level features dynamically, we propose an asymmetric co-training framework combining a deep graph convolutional network and a convolutional neural network for multi-class histopathological image classification. To improve the explainability of the entire framework by embedding morphological and topological distribution of cells, we build a 14-layer deep graph convolutional network to handle cell graph data. For the further utilization and dynamic interactions between pixel-level and cell-level information, we also design a co-training strategy to integrate the two asymmetric branches. Notably, we collect a private clinically acquired dataset termed LUAD7C, including seven subtypes of lung adenocarcinoma, which is rare and more challenging. We evaluated our approach on the private LUAD7C and public colorectal cancer datasets, showcasing its superior performance, explainability, and generalizability in multi-class histopathological image classification.
Abstract:Given an audio-visual pair, audio-visual segmentation (AVS) aims to locate sounding sources by predicting pixel-wise maps. Previous methods assume that each sound component in an audio signal always has a visual counterpart in the image. However, this assumption overlooks that off-screen sounds and background noise often contaminate the audio recordings in real-world scenarios. They impose significant challenges on building a consistent semantic mapping between audio and visual signals for AVS models and thus impede precise sound localization. In this work, we propose a two-stage bootstrapping audio-visual segmentation framework by incorporating multi-modal foundation knowledge. In a nutshell, our BAVS is designed to eliminate the interference of background noise or off-screen sounds in segmentation by establishing the audio-visual correspondences in an explicit manner. In the first stage, we employ a segmentation model to localize potential sounding objects from visual data without being affected by contaminated audio signals. Meanwhile, we also utilize a foundation audio classification model to discern audio semantics. Considering the audio tags provided by the audio foundation model are noisy, associating object masks with audio tags is not trivial. Thus, in the second stage, we develop an audio-visual semantic integration strategy (AVIS) to localize the authentic-sounding objects. Here, we construct an audio-visual tree based on the hierarchical correspondence between sounds and object categories. We then examine the label concurrency between the localized objects and classified audio tags by tracing the audio-visual tree. With AVIS, we can effectively segment real-sounding objects. Extensive experiments demonstrate the superiority of our method on AVS datasets, particularly in scenarios involving background noise. Our project website is https://yenanliu.github.io/AVSS.github.io/.
Abstract:The audio-visual segmentation (AVS) task aims to segment sounding objects from a given video. Existing works mainly focus on fusing audio and visual features of a given video to achieve sounding object masks. However, we observed that prior arts are prone to segment a certain salient object in a video regardless of the audio information. This is because sounding objects are often the most salient ones in the AVS dataset. Thus, current AVS methods might fail to localize genuine sounding objects due to the dataset bias. In this work, we present an audio-visual instance-aware segmentation approach to overcome the dataset bias. In a nutshell, our method first localizes potential sounding objects in a video by an object segmentation network, and then associates the sounding object candidates with the given audio. We notice that an object could be a sounding object in one video but a silent one in another video. This would bring ambiguity in training our object segmentation network as only sounding objects have corresponding segmentation masks. We thus propose a silent object-aware segmentation objective to alleviate the ambiguity. Moreover, since the category information of audio is unknown, especially for multiple sounding sources, we propose to explore the audio-visual semantic correlation and then associate audio with potential objects. Specifically, we attend predicted audio category scores to potential instance masks and these scores will highlight corresponding sounding instances while suppressing inaudible ones. When we enforce the attended instance masks to resemble the ground-truth mask, we are able to establish audio-visual semantics correlation. Experimental results on the AVS benchmarks demonstrate that our method can effectively segment sounding objects without being biased to salient objects.
Abstract:Generating vivid and diverse 3D co-speech gestures is crucial for various applications in animating virtual avatars. While most existing methods can generate gestures from audio directly, they usually overlook that emotion is one of the key factors of authentic co-speech gesture generation. In this work, we propose EmotionGesture, a novel framework for synthesizing vivid and diverse emotional co-speech 3D gestures from audio. Considering emotion is often entangled with the rhythmic beat in speech audio, we first develop an Emotion-Beat Mining module (EBM) to extract the emotion and audio beat features as well as model their correlation via a transcript-based visual-rhythm alignment. Then, we propose an initial pose based Spatial-Temporal Prompter (STP) to generate future gestures from the given initial poses. STP effectively models the spatial-temporal correlations between the initial poses and the future gestures, thus producing the spatial-temporal coherent pose prompt. Once we obtain pose prompts, emotion, and audio beat features, we will generate 3D co-speech gestures through a transformer architecture. However, considering the poses of existing datasets often contain jittering effects, this would lead to generating unstable gestures. To address this issue, we propose an effective objective function, dubbed Motion-Smooth Loss. Specifically, we model motion offset to compensate for jittering ground-truth by forcing gestures to be smooth. Last, we present an emotion-conditioned VAE to sample emotion features, enabling us to generate diverse emotional results. Extensive experiments demonstrate that our framework outperforms the state-of-the-art, achieving vivid and diverse emotional co-speech 3D gestures.
Abstract:In this paper, we propose an efficient self-supervised arbitrary-scale super-resolution (SR) framework to reconstruct isotropic magnetic resonance (MR) images from anisotropic MRI inputs without involving external training data. The proposed framework builds a training dataset using in-the-wild anisotropic MR volumes with arbitrary image resolution. We then formulate the 3D volume SR task as a SR problem for 2D image slices. The anisotropic volume's high-resolution (HR) plane is used to build the HR-LR image pairs for model training. We further adapt the implicit neural representation (INR) network to implement the 2D arbitrary-scale image SR model. Finally, we leverage the well-trained proposed model to up-sample the 2D LR plane extracted from the anisotropic MR volumes to their HR views. The isotropic MR volumes thus can be reconstructed by stacking and averaging the generated HR slices. Our proposed framework has two major advantages: (1) It only involves the arbitrary-resolution anisotropic MR volumes, which greatly improves the model practicality in real MR imaging scenarios (e.g., clinical brain image acquisition); (2) The INR-based SR model enables arbitrary-scale image SR from the arbitrary-resolution input image, which significantly improves model training efficiency. We perform experiments on a simulated public adult brain dataset and a real collected 7T brain dataset. The results indicate that our current framework greatly outperforms two well-known self-supervised models for anisotropic MR image SR tasks.
Abstract:Spatial attention has been widely used to improve the performance of convolutional neural networks. However, it has certain limitations. In this paper, we propose a new perspective on the effectiveness of spatial attention, which is that the spatial attention mechanism essentially solves the problem of convolutional kernel parameter sharing. However, the information contained in the attention map generated by spatial attention is not sufficient for large-size convolutional kernels. Therefore, we propose a novel attention mechanism called Receptive-Field Attention (RFA). Existing spatial attention, such as Convolutional Block Attention Module (CBAM) and Coordinated Attention (CA) focus only on spatial features, which does not fully address the problem of convolutional kernel parameter sharing. In contrast, RFA not only focuses on the receptive-field spatial feature but also provides effective attention weights for large-size convolutional kernels. The Receptive-Field Attention convolutional operation (RFAConv), developed by RFA, represents a new approach to replace the standard convolution operation. It offers nearly negligible increment of computational cost and parameters, while significantly improving network performance. We conducted a series of experiments on ImageNet-1k, COCO, and VOC datasets to demonstrate the superiority of our approach. Of particular importance, we believe that it is time to shift focus from spatial features to receptive-field spatial features for current spatial attention mechanisms. In this way, we can further improve network performance and achieve even better results. The code and pre-trained models for the relevant tasks can be found at https://github.com/Liuchen1997/RFAConv.
Abstract:In the past few years, more and more AI applications have been applied to edge devices. However, models trained by data scientists with machine learning frameworks, such as PyTorch or TensorFlow, can not be seamlessly executed on edge. In this paper, we develop an end-to-end code generator parsing a pre-trained model to C source libraries for the backend using MicroTVM, a machine learning compiler framework extension addressing inference on bare metal devices. An analysis shows that specific compute-intensive operators can be easily offloaded to the dedicated accelerator with a Universal Modular Accelerator (UMA) interface, while others are processed in the CPU cores. By using the automatically generated ahead-of-time C runtime, we conduct a hand gesture recognition experiment on an ARM Cortex M4F core.
Abstract:Predicting natural and diverse 3D hand gestures from the upper body dynamics is a practical yet challenging task in virtual avatar creation. Previous works usually overlook the asymmetric motions between two hands and generate two hands in a holistic manner, leading to unnatural results. In this work, we introduce a novel bilateral hand disentanglement based two-stage 3D hand generation method to achieve natural and diverse 3D hand prediction from body dynamics. In the first stage, we intend to generate natural hand gestures by two hand-disentanglement branches. Considering the asymmetric gestures and motions of two hands, we introduce a Spatial-Residual Memory (SRM) module to model spatial interaction between the body and each hand by residual learning. To enhance the coordination of two hand motions wrt. body dynamics holistically, we then present a Temporal-Motion Memory (TMM) module. TMM can effectively model the temporal association between body dynamics and two hand motions. The second stage is built upon the insight that 3D hand predictions should be non-deterministic given the sequential body postures. Thus, we further diversify our 3D hand predictions based on the initial output from the stage one. Concretely, we propose a Prototypical-Memory Sampling Strategy (PSS) to generate the non-deterministic hand gestures by gradient-based Markov Chain Monte Carlo (MCMC) sampling. Extensive experiments demonstrate that our method outperforms the state-of-the-art models on the B2H dataset and our newly collected TED Hands dataset. The dataset and code are available at https://github.com/XingqunQi-lab/Diverse-3D-Hand-Gesture-Prediction.
Abstract:Radiologists have different training and clinical experiences, so they may provide various segmentation annotations for a lung nodule, which causes segmentation uncertainty among multiple annotations. Conventional methods usually chose a single annotation as the learning target or tried to learn a latent space of various annotations. Still, they wasted the valuable information of consensus or disagreements ingrained in the multiple annotations. This paper proposes an Uncertainty-Aware Attention Mechanism (UAAM), which utilizes consensus or disagreements among annotations to produce a better segmentation. In UAAM, we propose a Multi-Confidence Mask (MCM), which is a combination of a Low-Confidence (LC) Mask and a High-Confidence (HC) Mask. LC mask indicates regions with low segmentation confidence, which may cause different segmentation options among radiologists. Following UAAM, we further design an Uncertainty-Guide Segmentation Network (UGS-Net), which contains three modules:Feature Extracting Module captures a general feature of a lung nodule. Uncertainty-Aware Module produce three features for the annotations' union, intersection, and annotation set. Finally, Intersection-Union Constraining Module use distances between three features to balance the predictions of final segmentation, LC mask, and HC mask. To fully demonstrate the performance of our method, we propose a Complex Nodule Challenge on LIDC-IDRI, which tests UGS-Net's segmentation performance on the lung nodules that are difficult to segment by U-Net. Experimental results demonstrate that our method can significantly improve the segmentation performance on nodules with poor segmentation by U-Net.
Abstract:We propose a new approach to volatility modelling by combining deep learning (LSTM) and realized volatility measures. This LSTM-enhanced realized GARCH framework incorporates and distills modeling advances from financial econometrics, high frequency trading data and deep learning. Bayesian inference via the Sequential Monte Carlo method is employed for statistical inference and forecasting. The new framework can jointly model the returns and realized volatility measures, has an excellent in-sample fit and superior predictive performance compared to several benchmark models, while being able to adapt well to the stylized facts in volatility. The performance of the new framework is tested using a wide range of metrics, from marginal likelihood, volatility forecasting, to tail risk forecasting and option pricing. We report on a comprehensive empirical study using 31 widely traded stock indices over a time period that includes COVID-19 pandemic.