



Abstract:The challenge of fine-grained visual recognition often lies in discovering the key discriminative regions. While such regions can be automatically identified from a large-scale labeled dataset, a similar method might become less effective when only a few annotations are available. In low data regimes, a network often struggles to choose the correct regions for recognition and tends to overfit spurious correlated patterns from the training data. To tackle this issue, this paper proposes the self-boosting attention mechanism, a novel method for regularizing the network to focus on the key regions shared across samples and classes. Specifically, the proposed method first generates an attention map for each training image, highlighting the discriminative part for identifying the ground-truth object category. Then the generated attention maps are used as pseudo-annotations. The network is enforced to fit them as an auxiliary task. We call this approach the self-boosting attention mechanism (SAM). We also develop a variant by using SAM to create multiple attention maps to pool convolutional maps in a style of bilinear pooling, dubbed SAM-Bilinear. Through extensive experimental studies, we show that both methods can significantly improve fine-grained visual recognition performance on low data regimes and can be incorporated into existing network architectures. The source code is publicly available at: https://github.com/GANPerf/SAM




Abstract:Recently, self-supervised pre-training has advanced Vision Transformers on various tasks w.r.t. different data modalities, e.g., image and 3D point cloud data. In this paper, we explore this learning paradigm for 3D mesh data analysis based on Transformers. Since applying Transformer architectures to new modalities is usually non-trivial, we first adapt Vision Transformer to 3D mesh data processing, i.e., Mesh Transformer. In specific, we divide a mesh into several non-overlapping local patches with each containing the same number of faces and use the 3D position of each patch's center point to form positional embeddings. Inspired by MAE, we explore how pre-training on 3D mesh data with the Transformer-based structure benefits downstream 3D mesh analysis tasks. We first randomly mask some patches of the mesh and feed the corrupted mesh into Mesh Transformers. Then, through reconstructing the information of masked patches, the network is capable of learning discriminative representations for mesh data. Therefore, we name our method MeshMAE, which can yield state-of-the-art or comparable performance on mesh analysis tasks, i.e., classification and segmentation. In addition, we also conduct comprehensive ablation studies to show the effectiveness of key designs in our method.




Abstract:In recent years, deep dictionary learning (DDL)has attracted a great amount of attention due to its effectiveness for representation learning and visual recognition.~However, most existing methods focus on unsupervised deep dictionary learning, failing to further explore the category information.~To make full use of the category information of different samples, we propose a novel deep dictionary learning model with an intra-class constraint (DDLIC) for visual classification. Specifically, we design the intra-class compactness constraint on the intermediate representation at different levels to encourage the intra-class representations to be closer to each other, and eventually the learned representation becomes more discriminative.~Unlike the traditional DDL methods, during the classification stage, our DDLIC performs a layer-wise greedy optimization in a similar way to the training stage. Experimental results on four image datasets show that our method is superior to the state-of-the-art methods.




Abstract:Point cloud semantic segmentation from projected views, such as range-view (RV) and bird's-eye-view (BEV), has been intensively investigated. Different views capture different information of point clouds and thus are complementary to each other. However, recent projection-based methods for point cloud semantic segmentation usually utilize a vanilla late fusion strategy for the predictions of different views, failing to explore the complementary information from a geometric perspective during the representation learning. In this paper, we introduce a geometric flow network (GFNet) to explore the geometric correspondence between different views in an align-before-fuse manner. Specifically, we devise a novel geometric flow module (GFM) to bidirectionally align and propagate the complementary information across different views according to geometric relationships under the end-to-end learning scheme. We perform extensive experiments on two widely used benchmark datasets, SemanticKITTI and nuScenes, to demonstrate the effectiveness of our GFNet for project-based point cloud semantic segmentation. Concretely, GFNet not only significantly boosts the performance of each individual view but also achieves state-of-the-art results over all existing projection-based models. Code is available at \url{https://github.com/haibo-qiu/GFNet}.




Abstract:Attention mechanisms have been very popular in deep neural networks, where the Transformer architecture has achieved great success in not only natural language processing but also visual recognition applications. Recently, a new Transformer module, applying on batch dimension rather than spatial/channel dimension, i.e., BatchFormer [18], has been introduced to explore sample relationships for overcoming data scarcity challenges. However, it only works with image-level representations for classification. In this paper, we devise a more general batch Transformer module, BatchFormerV2, which further enables exploring sample relationships for dense representation learning. Specifically, when applying the proposed module, it employs a two-stream pipeline during training, i.e., either with or without a BatchFormerV2 module, where the batchformer stream can be removed for testing. Therefore, the proposed method is a plug-and-play module and can be easily integrated into different vision Transformers without any extra inference cost. Without bells and whistles, we show the effectiveness of the proposed method for a variety of popular visual recognition tasks, including image classification and two important dense prediction tasks: object detection and panoptic segmentation. Particularly, BatchFormerV2 consistently improves current DETR-based detection methods (e.g., DETR, Deformable-DETR, Conditional DETR, and SMCA) by over 1.3%. Code will be made publicly available.




Abstract:Despite the success of deep neural networks, there are still many challenges in deep representation learning due to the data scarcity issues such as data imbalance, unseen distribution, and domain shift. To address the above-mentioned issues, a variety of methods have been devised to explore the sample relationships in a vanilla way (i.e., from the perspectives of either the input or the loss function), failing to explore the internal structure of deep neural networks for learning with sample relationships. Inspired by this, we propose to enable deep neural networks themselves with the ability to learn the sample relationships from each mini-batch. Specifically, we introduce a batch transformer module or BatchFormer, which is then applied into the batch dimension of each mini-batch to implicitly explore sample relationships during training. By doing this, the proposed method enables the collaboration of different samples, e.g., the head-class samples can also contribute to the learning of the tail classes for long-tailed recognition. Furthermore, to mitigate the gap between training and testing, we share the classifier between with or without the BatchFormer during training, which can thus be removed during testing. We perform extensive experiments on over ten datasets and the proposed method achieves significant improvements on different data scarcity applications without any bells and whistles, including the tasks of long-tailed recognition, compositional zero-shot learning, domain generalization, and contrastive learning. Code will be made publicly available at https://github.com/zhihou7/BatchFormer.




Abstract:A comprehensive understanding of human-object interaction (HOI) requires detecting not only a small portion of predefined HOI concepts (or categories) but also other reasonable HOI concepts, while current approaches usually fail to explore a huge portion of unknown HOI concepts (i.e., unknown but reasonable combinations of verbs and objects). In this paper, 1) we introduce a novel and challenging task for a comprehensive HOI understanding, which is termed as HOI Concept Discovery; and 2) we devise a self-compositional learning framework (or SCL) for HOI concept discovery. Specifically, we maintain an online updated concept confidence matrix during training: 1) we assign pseudo-labels for all composite HOI instances according to the concept confidence matrix for self-training; and 2) we update the concept confidence matrix using the predictions of all composite HOI instances. Therefore, the proposed method enables the learning on both known and unknown HOI concepts. We perform extensive experiments on several popular HOI datasets to demonstrate the effectiveness of the proposed method for HOI concept discovery, object affordance recognition and HOI detection. For example, the proposed self-compositional learning framework significantly improves the performance of 1) HOI concept discovery by over 10% on HICO-DET and over 3% on V-COCO, respectively; 2) object affordance recognition by over 9% mAP on MS-COCO and HICO-DET; and 3) rare-first and non-rare-first unknown HOI detection relatively over 30% and 20%, respectively. Code and models will be made publicly available at https://github.com/zhihou7/HOI-CL.




Abstract:Recent studies show that Graph Neural Networks (GNNs) are vulnerable to adversarial attack, i.e., an imperceptible structure perturbation can fool GNNs to make wrong predictions. Some researches explore specific properties of clean graphs such as the feature smoothness to defense the attack, but the analysis of it has not been well-studied. In this paper, we analyze the adversarial attack on graphs from the perspective of feature smoothness which further contributes to an efficient new adversarial defensive algorithm for GNNs. We discover that the effect of the high-order graph structure is a smoother filter for processing graph structures. Intuitively, the high-order graph structure denotes the path number between nodes, where larger number indicates closer connection, so it naturally contributes to defense the adversarial perturbation. Further, we propose a novel algorithm that incorporates the high-order structural information into the graph structure learning. We perform experiments on three popular benchmark datasets, Cora, Citeseer and Polblogs. Extensive experiments demonstrate the effectiveness of our method for defending against graph adversarial attacks.




Abstract:Point cloud segmentation is fundamental in understanding 3D environments. However, current 3D point cloud segmentation methods usually perform poorly on scene boundaries, which degenerates the overall segmentation performance. In this paper, we focus on the segmentation of scene boundaries. Accordingly, we first explore metrics to evaluate the segmentation performance on scene boundaries. To address the unsatisfactory performance on boundaries, we then propose a novel contrastive boundary learning (CBL) framework for point cloud segmentation. Specifically, the proposed CBL enhances feature discrimination between points across boundaries by contrasting their representations with the assistance of scene contexts at multiple scales. By applying CBL on three different baseline methods, we experimentally show that CBL consistently improves different baselines and assists them to achieve compelling performance on boundaries, as well as the overall performance, eg in mIoU. The experimental results demonstrate the effectiveness of our method and the importance of boundaries for 3D point cloud segmentation. Code and model will be made publicly available at https://github.com/LiyaoTang/contrastBoundary.




Abstract:Weakly-supervised semantic segmentation (WSSS) with image-level labels is an important and challenging task. Due to the high training efficiency, end-to-end solutions for WSSS have received increasing attention from the community. However, current methods are mainly based on convolutional neural networks and fail to explore the global information properly, thus usually resulting in incomplete object regions. In this paper, to address the aforementioned problem, we introduce Transformers, which naturally integrate global information, to generate more integral initial pseudo labels for end-to-end WSSS. Motivated by the inherent consistency between the self-attention in Transformers and the semantic affinity, we propose an Affinity from Attention (AFA) module to learn semantic affinity from the multi-head self-attention (MHSA) in Transformers. The learned affinity is then leveraged to refine the initial pseudo labels for segmentation. In addition, to efficiently derive reliable affinity labels for supervising AFA and ensure the local consistency of pseudo labels, we devise a Pixel-Adaptive Refinement module that incorporates low-level image appearance information to refine the pseudo labels. We perform extensive experiments and our method achieves 66.0% and 38.9% mIoU on the PASCAL VOC 2012 and MS COCO 2014 datasets, respectively, significantly outperforming recent end-to-end methods and several multi-stage competitors. Code is available at https://github.com/rulixiang/afa.