Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Dynamic Encoder Transducer: A Flexible Solution For Trading Off Accuracy For Latency

Apr 05, 2021
Yangyang Shi, Varun Nagaraja, Chunyang Wu, Jay Mahadeokar, Duc Le, Rohit Prabhavalkar, Alex Xiao, Ching-Feng Yeh, Julian Chan, Christian Fuegen, Ozlem Kalinli, Michael L. Seltzer

We propose a dynamic encoder transducer (DET) for on-device speech recognition. One DET model scales to multiple devices with different computation capacities without retraining or finetuning. To trading off accuracy and latency, DET assigns different encoders to decode different parts of an utterance. We apply and compare the layer dropout and the collaborative learning for DET training. The layer dropout method that randomly drops out encoder layers in the training phase, can do on-demand layer dropout in decoding. Collaborative learning jointly trains multiple encoders with different depths in one single model. Experiment results on Librispeech and in-house data show that DET provides a flexible accuracy and latency trade-off. Results on Librispeech show that the full-size encoder in DET relatively reduces the word error rate of the same size baseline by over 8%. The lightweight encoder in DET trained with collaborative learning reduces the model size by 25% but still gets similar WER as the full-size baseline. DET gets similar accuracy as a baseline model with better latency on a large in-house data set by assigning a lightweight encoder for the beginning part of one utterance and a full-size encoder for the rest.

* 5 pages, 2 figures, submitted Interspeech 2021 

  Access Paper or Ask Questions

Y$^2$-Net FCRN for Acoustic Echo and Noise Suppression

Mar 31, 2021
Ernst Seidel, Jan Franzen, Maximilian Strake, Tim Fingscheidt

In recent years, deep neural networks (DNNs) were studied as an alternative to traditional acoustic echo cancellation (AEC) algorithms. The proposed models achieved remarkable performance for the separate tasks of AEC and residual echo suppression (RES). A promising network topology is a fully convolutional recurrent network (FCRN) structure, which has already proven its performance on both noise suppression and AEC tasks, individually. However, the combination of AEC, postfiltering, and noise suppression to a single network typically leads to a noticeable decline in the quality of the near-end speech component due to the lack of a separate loss for echo estimation. In this paper, we propose a two-stage model (Y$^2$-Net) which consists of two FCRNs, each with two inputs and one output (Y-Net). The first stage (AEC) yields an echo estimate, which - as a novelty for a DNN AEC model - is further used by the second stage to perform RES and noise suppression. While the subjective listening test of the Interspeech 2021 AEC Challenge mostly yielded results close to the baseline, the proposed method scored an average improvement of 0.46 points over the baseline on the blind testset in double-talk on the instrumental metric DECMOS, provided by the challenge organizers.

* 5 pages, 2 figures, submitted to Interspeech 2021 

  Access Paper or Ask Questions

Evolving Learning Rate Optimizers for Deep Neural Networks

Mar 23, 2021
Pedro Carvalho, Nuno Lourenço, Penousal Machado

Artificial Neural Networks (ANNs) became popular due to their successful application difficult problems such image and speech recognition. However, when practitioners want to design an ANN they need to undergo laborious process of selecting a set of parameters and topology. Currently, there are several state-of-the art methods that allow for the automatic selection of some of these aspects. Learning Rate optimizers are a set of such techniques that search for good values of learning rates. Whilst these techniques are effective and have yielded good results over the years, they are general solution i.e. they do not consider the characteristics of a specific network. We propose a framework called AutoLR to automatically design Learning Rate Optimizers. Two versions of the system are detailed. The first one, Dynamic AutoLR, evolves static and dynamic learning rate optimizers based on the current epoch and the previous learning rate. The second version, Adaptive AutoLR, evolves adaptive optimizers that can fine tune the learning rate for each network eeight which makes them generally more effective. The results are competitive with the best state of the art methods, even outperforming them in some scenarios. Furthermore, the system evolved a classifier, ADES, that appears to be novel and innovative since, to the best of our knowledge, it has a structure that differs from state of the art methods.

* 10 pages, 5 figures 

  Access Paper or Ask Questions

Self-Training Pre-Trained Language Models for Zero- and Few-Shot Multi-Dialectal Arabic Sequence Labeling

Jan 24, 2021
Muhammad Khalifa, Muhammad Abdul-Mageed, Khaled Shaalan

A sufficient amount of annotated data is required to fine-tune pre-trained language models for downstream tasks. Unfortunately, attaining labeled data can be costly, especially for multiple language varieties/dialects. We propose to self-train pre-trained language models in zero- and few-shot scenarios to improve the performance on data-scarce dialects using only resources from data-rich ones. We demonstrate the utility of our approach in the context of Arabic sequence labeling by using a language model fine-tuned on Modern Standard Arabic (MSA) only to predict named entities (NE) and part-of-speech (POS) tags on several dialectal Arabic (DA) varieties. We show that self-training is indeed powerful, improving zero-shot MSA-to-DA transfer by as large as \texttildelow 10\% F$_1$ (NER) and 2\% accuracy (POS tagging). We acquire even better performance in few-shot scenarios with limited labeled data. We conduct an ablation experiment and show that the performance boost observed directly results from the unlabeled DA examples for self-training and opens up opportunities for developing DA models exploiting only MSA resources. Our approach can also be extended to other languages and tasks.

* Accepted at EACL 2021 

  Access Paper or Ask Questions

LiteMuL: A Lightweight On-Device Sequence Tagger using Multi-task Learning

Dec 15, 2020
Sonal Kumari, Vibhav Agarwal, Bharath Challa, Kranti Chalamalasetti, Sourav Ghosh, Harshavardhana, Barath Raj Kandur Raja

Named entity detection and Parts-of-speech tagging are the key tasks for many NLP applications. Although the current state of the art methods achieved near perfection for long, formal, structured text there are hindrances in deploying these models on memory-constrained devices such as mobile phones. Furthermore, the performance of these models is degraded when they encounter short, informal, and casual conversations. To overcome these difficulties, we present LiteMuL - a lightweight on-device sequence tagger that can efficiently process the user conversations using a Multi-Task Learning (MTL) approach. To the best of our knowledge, the proposed model is the first on-device MTL neural model for sequence tagging. Our LiteMuL model is about 2.39 MB in size and achieved an accuracy of 0.9433 (for NER), 0.9090 (for POS) on the CoNLL 2003 dataset. The proposed LiteMuL not only outperforms the current state of the art results but also surpasses the results of our proposed on-device task-specific models, with accuracy gains of up to 11% and model-size reduction by 50%-56%. Our model is competitive with other MTL approaches for NER and POS tasks while outshines them with a low memory footprint. We also evaluated our model on custom-curated user conversations and observed impressive results.

* Accepted for publication in IEEE ICSC 2021 

  Access Paper or Ask Questions

An Overview of Deep Learning Architectures in Few-Shot Learning Domain

Aug 19, 2020
Shruti Jadon

Since 2012, Deep learning has revolutionized Artificial Intelligence and has achieved state-of-the-art outcomes in different domains, ranging from Image Classification to Speech Generation. Though it has many potentials, our current architectures come with the pre-requisite of large amounts of data. Few-Shot Learning (also known as one-shot learning) is a sub-field of machine learning that aims to create such models that can learn the desired objective with less data, similar to how humans learn. In this paper, we have reviewed some of the well-known deep learning-based approaches towards few-shot learning. We have discussed the recent achievements, challenges, and possibilities of improvement of few-shot learning based deep learning architectures. Our aim for this paper is threefold: (i) Give a brief introduction to deep learning architectures for few-shot learning with pointers to core references. (ii) Indicate how deep learning has been applied to the low-data regime, from data preparation to model training. and, (iii) Provide a starting point for people interested in experimenting and perhaps contributing to the field of few-shot learning by pointing out some useful resources and open-source code. Our code is available at Github:

* 11 pages, 11 figures 

  Access Paper or Ask Questions

Neural Machine Translation for Multilingual Grapheme-to-Phoneme Conversion

Jun 28, 2020
Alex Sokolov, Tracy Rohlin, Ariya Rastrow

Grapheme-to-phoneme (G2P) models are a key component in Automatic Speech Recognition (ASR) systems, such as the ASR system in Alexa, as they are used to generate pronunciations for out-of-vocabulary words that do not exist in the pronunciation lexicons (mappings like "e c h o" to "E k oU"). Most G2P systems are monolingual and based on traditional joint-sequence based n-gram models [1,2]. As an alternative, we present a single end-to-end trained neural G2P model that shares same encoder and decoder across multiple languages. This allows the model to utilize a combination of universal symbol inventories of Latin-like alphabets and cross-linguistically shared feature representations. Such model is especially useful in the scenarios of low resource languages and code switching/foreign words, where the pronunciations in one language need to be adapted to other locales or accents. We further experiment with word language distribution vector as an additional training target in order to improve system performance by helping the model decouple pronunciations across a variety of languages in the parameter space. We show 7.2% average improvement in phoneme error rate over low resource languages and no degradation over high resource ones compared to monolingual baselines.

* Published in INTERSPEECH (2019) 

  Access Paper or Ask Questions