Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Unified Mandarin TTS Front-end Based on Distilled BERT Model

Dec 31, 2020
Yang Zhang, Liqun Deng, Yasheng Wang

The front-end module in a typical Mandarin text-to-speech system (TTS) is composed of a long pipeline of text processing components, which requires extensive efforts to build and is prone to large accumulative model size and cascade errors. In this paper, a pre-trained language model (PLM) based model is proposed to simultaneously tackle the two most important tasks in TTS front-end, i.e., prosodic structure prediction (PSP) and grapheme-to-phoneme (G2P) conversion. We use a pre-trained Chinese BERT[1] as the text encoder and employ multi-task learning technique to adapt it to the two TTS front-end tasks. Then, the BERT encoder is distilled into a smaller model by employing a knowledge distillation technique called TinyBERT[2], making the whole model size 25% of that of benchmark pipeline models while maintaining competitive performance on both tasks. With the proposed the methods, we are able to run the whole TTS front-end module in a light and unified manner, which is more friendly to deployment on mobile devices.

* 5 pages 

  Access Paper or Ask Questions

A Correspondence Variational Autoencoder for Unsupervised Acoustic Word Embeddings

Dec 03, 2020
Puyuan Peng, Herman Kamper, Karen Livescu

We propose a new unsupervised model for mapping a variable-duration speech segment to a fixed-dimensional representation. The resulting acoustic word embeddings can form the basis of search, discovery, and indexing systems for low- and zero-resource languages. Our model, which we refer to as a maximal sampling correspondence variational autoencoder (MCVAE), is a recurrent neural network (RNN) trained with a novel self-supervised correspondence loss that encourages consistency between embeddings of different instances of the same word. Our training scheme improves on previous correspondence training approaches through the use and comparison of multiple samples from the approximate posterior distribution. In the zero-resource setting, the MCVAE can be trained in an unsupervised way, without any ground-truth word pairs, by using the word-like segments discovered via an unsupervised term discovery system. In both this setting and a semi-supervised low-resource setting (with a limited set of ground-truth word pairs), the MCVAE outperforms previous state-of-the-art models, such as Siamese-, CAE- and VAE-based RNNs.

* 10 pages, 6 figures, NeurIPS 2020 Workshop Self-Supervised Learning for Speech and Audio Processing 

  Access Paper or Ask Questions

Multi-microphone Complex Spectral Mapping for Utterance-wise and Continuous Speaker Separation

Oct 04, 2020
Zhong-Qiu Wang, Peidong Wang, DeLiang Wang

We propose multi-microphone complex spectral mapping, a simple way of applying deep learning for time-varying non-linear beamforming, for offline utterance-wise and block-online continuous speaker separation in reverberant conditions, aiming at both speaker separation and dereverberation. Assuming a fixed array geometry between training and testing, we train deep neural networks (DNN) to predict the real and imaginary (RI) components of target speech at a reference microphone from the RI components of multiple microphones. We then integrate multi-microphone complex spectral mapping with beamforming and post-filtering to further improve separation, and combine it with frame-level speaker counting for block-online continuous speaker separation (CSS). Although our system is trained on simulated room impulse responses (RIR) based on a fixed number of microphones arranged in a given geometry, it generalizes well to a real array with the same geometry. State-of-the-art separation performance is obtained on the simulated two-talker SMS-WSJ corpus and the real-recorded LibriCSS dataset.

* 10 pages, in submission 

  Access Paper or Ask Questions

Audio Dequantization for High Fidelity Audio Generation in Flow-based Neural Vocoder

Aug 16, 2020
Hyun-Wook Yoon, Sang-Hoon Lee, Hyeong-Rae Noh, Seong-Whan Lee

In recent works, a flow-based neural vocoder has shown significant improvement in real-time speech generation task. The sequence of invertible flow operations allows the model to convert samples from simple distribution to audio samples. However, training a continuous density model on discrete audio data can degrade model performance due to the topological difference between latent and actual distribution. To resolve this problem, we propose audio dequantization methods in flow-based neural vocoder for high fidelity audio generation. Data dequantization is a well-known method in image generation but has not yet been studied in the audio domain. For this reason, we implement various audio dequantization methods in flow-based neural vocoder and investigate the effect on the generated audio. We conduct various objective performance assessments and subjective evaluation to show that audio dequantization can improve audio generation quality. From our experiments, using audio dequantization produces waveform audio with better harmonic structure and fewer digital artifacts.

* Accepted in INTERSPEECH2020 

  Access Paper or Ask Questions

SemEval-2020 Task 10: Emphasis Selection for Written Text in Visual Media

Aug 07, 2020
Amirreza Shirani, Franck Dernoncourt, Nedim Lipka, Paul Asente, Jose Echevarria, Thamar Solorio

In this paper, we present the main findings and compare the results of SemEval-2020 Task 10, Emphasis Selection for Written Text in Visual Media. The goal of this shared task is to design automatic methods for emphasis selection, i.e. choosing candidates for emphasis in textual content to enable automated design assistance in authoring. The main focus is on short text instances for social media, with a variety of examples, from social media posts to inspirational quotes. Participants were asked to model emphasis using plain text with no additional context from the user or other design considerations. SemEval-2020 Emphasis Selection shared task attracted 197 participants in the early phase and a total of 31 teams made submissions to this task. The highest-ranked submission achieved 0.823 Matchm score. The analysis of systems submitted to the task indicates that BERT and RoBERTa were the most common choice of pre-trained models used, and part of speech tag (POS) was the most useful feature. Full results can be found on the task's website.

* Accepted at Proceedings of 14th International Workshop on Semantic Evaluation (SemEval-2020) 

  Access Paper or Ask Questions

Video Super Resolution Based on Deep Learning: A comprehensive survey

Jul 25, 2020
Hongying Liu, Zhubo Ruan, Peng Zhao, Fanhua Shang, Linlin Yang, Yuanyuan Liu

In recent years, deep learning has made great progress in the fields of image recognition, video analysis, natural language processing and speech recognition, including video super-resolution tasks. In this survey, we comprehensively investigate 28 state-of-the-art video super-resolution methods based on deep learning. It is well known that the leverage of information within video frames is important for video super-resolution. Hence we propose a taxonomy and classify the methods into six sub-categories according to the ways of utilizing inter-frame information. Moreover, the architectures and implementation details (including input and output, loss function and learning rate) of all the methods are depicted in details. Finally, we summarize and compare their performance on some benchmark datasets under different magnification factors. We also discuss some challenges, which need to be further addressed by researchers in the community of video super-resolution. Therefore, this work is expected to make a contribution to the future development of research in video super-resolution, and alleviate understandability and transferability of existing and future techniques into practice.

  Access Paper or Ask Questions

Massively Multilingual ASR: 50 Languages, 1 Model, 1 Billion Parameters

Jul 08, 2020
Vineel Pratap, Anuroop Sriram, Paden Tomasello, Awni Hannun, Vitaliy Liptchinsky, Gabriel Synnaeve, Ronan Collobert

We study training a single acoustic model for multiple languages with the aim of improving automatic speech recognition (ASR) performance on low-resource languages, and over-all simplifying deployment of ASR systems that support diverse languages. We perform an extensive benchmark on 51 languages, with varying amount of training data by language(from 100 hours to 1100 hours). We compare three variants of multilingual training from a single joint model without knowing the input language, to using this information, to multiple heads (one per language cluster). We show that multilingual training of ASR models on several languages can improve recognition performance, in particular, on low resource languages. We see 20.9%, 23% and 28.8% average WER relative reduction compared to monolingual baselines on joint model, joint model with language input and multi head model respectively. To our knowledge, this is the first work studying multilingual ASR at massive scale, with more than 50 languages and more than 16,000 hours of audio across them.

  Access Paper or Ask Questions

A Multitask Learning Approach for Diacritic Restoration

Jun 07, 2020
Sawsan Alqahtani, Ajay Mishra, Mona Diab

In many languages like Arabic, diacritics are used to specify pronunciations as well as meanings. Such diacritics are often omitted in written text, increasing the number of possible pronunciations and meanings for a word. This results in a more ambiguous text making computational processing on such text more difficult. Diacritic restoration is the task of restoring missing diacritics in the written text. Most state-of-the-art diacritic restoration models are built on character level information which helps generalize the model to unseen data, but presumably lose useful information at the word level. Thus, to compensate for this loss, we investigate the use of multi-task learning to jointly optimize diacritic restoration with related NLP problems namely word segmentation, part-of-speech tagging, and syntactic diacritization. We use Arabic as a case study since it has sufficient data resources for tasks that we consider in our joint modeling. Our joint models significantly outperform the baselines and are comparable to the state-of-the-art models that are more complex relying on morphological analyzers and/or a lot more data (e.g. dialectal data).

* ACL 2020 

  Access Paper or Ask Questions

Exploring and Predicting Transferability across NLP Tasks

May 02, 2020
Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessandro Sordoni, Adam Trischler, Andrew Mattarella-Micke, Subhransu Maji, Mohit Iyyer

Recent advances in NLP demonstrate the effectiveness of training large-scale language models and transferring them to downstream tasks. Can fine-tuning these models on tasks other than language modeling further improve performance? In this paper, we conduct an extensive study of the transferability between 33 NLP tasks across three broad classes of problems (text classification, question answering, and sequence labeling). Our results show that transfer learning is more beneficial than previously thought, especially when target task data is scarce, and can improve performance even when the source task is small or differs substantially from the target task (e.g., part-of-speech tagging transfers well to the DROP QA dataset). We also develop task embeddings that can be used to predict the most transferable source tasks for a given target task, and we validate their effectiveness in experiments controlled for source and target data size. Overall, our experiments reveal that factors such as source data size, task and domain similarity, and task complexity all play a role in determining transferability.

* Preprint, 44 pages, 3 figures, 33 tables 

  Access Paper or Ask Questions

Bridging the Gap between Spatial and Spectral Domains: A Survey on Graph Neural Networks

Mar 01, 2020
Zhiqian Chen, Fanglan Chen, Lei Zhang, Taoran Ji, Kaiqun Fu, Liang Zhao, Feng Chen, Chang-Tien Lu

The success of deep learning has been widely recognized in many machine learning tasks during the last decades, ranging from image classification and speech recognition to natural language understanding. As an extension of deep learning, Graph neural networks (GNNs) are designed to solve the non-Euclidean problems on graph-structured data which can hardly be handled by general deep learning techniques. Existing GNNs under various mechanisms, such as random walk, PageRank, graph convolution, and heat diffusion, are designed for different types of graphs and problems, which makes it difficult to compare them directly. Previous GNN surveys focus on categorizing current models into independent groups, lacking analysis regarding their internal connection. This paper proposes a unified framework and provides a novel perspective that can widely fit existing GNNs into our framework methodologically. Specifically, we survey and categorize existing GNN models into the spatial and spectral domains, and reveal connections among subcategories in each domain. Further analysis establishes a strong link across the spatial and spectral domains.

  Access Paper or Ask Questions