What is music generation? Music generation is the task of generating music or music-like sounds from a model or algorithm.
Papers and Code
Dec 25, 2024
Abstract:Computational music research plays a critical role in advancing music production, distribution, and understanding across various musical styles worldwide. Despite the immense cultural and religious significance, the Ethiopian Orthodox Tewahedo Church (EOTC) chants are relatively underrepresented in computational music research. This paper contributes to this field by introducing a new dataset specifically tailored for analyzing EOTC chants, also known as Yaredawi Zema. This work provides a comprehensive overview of a 10-hour dataset, 369 instances, creation, and curation process, including rigorous quality assurance measures. Our dataset has a detailed word-level temporal boundary and reading tone annotation along with the corresponding chanting mode label of audios. Moreover, we have also identified the chanting options associated with multiple chanting notations in the manuscript by annotating them accordingly. Our goal in making this dataset available to the public 1 is to encourage more research and study of EOTC chants, including lyrics transcription, lyric-to-audio alignment, and music generation tasks. Such research work will advance knowledge and efforts to preserve this distinctive liturgical music, a priceless cultural artifact for the Ethiopian people.
* 2024 International Conference on Information and Communication
Technology for Development for Africa (ICT4DA)
* 6 pages
Via

Dec 18, 2024
Abstract:Recent AI-driven step-function advances in several longstanding problems in music technology are opening up new avenues to create the next generation of music education tools. Creating personalized, engaging, and effective learning experiences are continuously evolving challenges in music education. Here we present two case studies using such advances in music technology to address these challenges. In our first case study we showcase an application that uses Automatic Chord Recognition to generate personalized exercises from audio tracks, connecting traditional ear training with real-world musical contexts. In the second case study we prototype adaptive piano method books that use Automatic Music Transcription to generate exercises at different skill levels while retaining a close connection to musical interests. These applications demonstrate how recent AI developments can democratize access to high-quality music education and promote rich interaction with music in the age of generative AI. We hope this work inspires other efforts in the community, aimed at removing barriers to access to high-quality music education and fostering human participation in musical expression.
* 38th Conference on Neural Information Processing Systems (NeurIPS
2024) Creative AI Track
Via

Jan 20, 2025
Abstract:Audio in the real world may be perturbed due to numerous factors, causing the audio quality to be degraded. The following work presents an audio restoration model tailored for high-res music at 44.1kHz. Our model, Audio-to-Audio Schrodinger Bridges (A2SB), is capable of both bandwidth extension (predicting high-frequency components) and inpainting (re-generating missing segments). Critically, A2SB is end-to-end without need of a vocoder to predict waveform outputs, able to restore hour-long audio inputs, and trained on permissively licensed music data. A2SB is capable of achieving state-of-the-art bandwidth extension and inpainting quality on several out-of-distribution music test sets. Our demo website is https: //research.nvidia.com/labs/adlr/A2SB/.
Via

Feb 07, 2025
Abstract:The quantification of audio aesthetics remains a complex challenge in audio processing, primarily due to its subjective nature, which is influenced by human perception and cultural context. Traditional methods often depend on human listeners for evaluation, leading to inconsistencies and high resource demands. This paper addresses the growing need for automated systems capable of predicting audio aesthetics without human intervention. Such systems are crucial for applications like data filtering, pseudo-labeling large datasets, and evaluating generative audio models, especially as these models become more sophisticated. In this work, we introduce a novel approach to audio aesthetic evaluation by proposing new annotation guidelines that decompose human listening perspectives into four distinct axes. We develop and train no-reference, per-item prediction models that offer a more nuanced assessment of audio quality. Our models are evaluated against human mean opinion scores (MOS) and existing methods, demonstrating comparable or superior performance. This research not only advances the field of audio aesthetics but also provides open-source models and datasets to facilitate future work and benchmarking. We release our code and pre-trained model at: https://github.com/facebookresearch/audiobox-aesthetics
Via

Jan 23, 2025
Abstract:We propose a unified framework for Singing Voice Synthesis (SVS) and Conversion (SVC), addressing the limitations of existing approaches in cross-domain SVS/SVC, poor output musicality, and scarcity of singing data. Our framework enables control over multiple aspects, including language content based on lyrics, performance attributes based on a musical score, singing style and vocal techniques based on a selector, and voice identity based on a speech sample. The proposed zero-shot learning paradigm consists of one SVS model and two SVC models, utilizing pre-trained content embeddings and a diffusion-based generator. The proposed framework is also trained on mixed datasets comprising both singing and speech audio, allowing singing voice cloning based on speech reference. Experiments show substantial improvements in timbre similarity and musicality over state-of-the-art baselines, providing insights into other low-data music tasks such as instrumental style transfer. Examples can be found at: everyone-can-sing.github.io.
Via

Dec 13, 2024
Abstract:Lyric-to-melody generation is a highly challenging task in the field of AI music generation. Due to the difficulty of learning strict yet weak correlations between lyrics and melodies, previous methods have suffered from weak controllability, low-quality and poorly structured generation. To address these challenges, we propose CSL-L2M, a controllable song-level lyric-to-melody generation method based on an in-attention Transformer decoder with fine-grained lyric and musical controls, which is able to generate full-song melodies matched with the given lyrics and user-specified musical attributes. Specifically, we first introduce REMI-Aligned, a novel music representation that incorporates strict syllable- and sentence-level alignments between lyrics and melodies, facilitating precise alignment modeling. Subsequently, sentence-level semantic lyric embeddings independently extracted from a sentence-wise Transformer encoder are combined with word-level part-of-speech embeddings and syllable-level tone embeddings as fine-grained controls to enhance the controllability of lyrics over melody generation. Then we introduce human-labeled musical tags, sentence-level statistical musical attributes, and learned musical features extracted from a pre-trained VQ-VAE as coarse-grained, fine-grained and high-fidelity controls, respectively, to the generation process, thereby enabling user control over melody generation. Finally, an in-attention Transformer decoder technique is leveraged to exert fine-grained control over the full-song melody generation with the aforementioned lyric and musical conditions. Experimental results demonstrate that our proposed CSL-L2M outperforms the state-of-the-art models, generating melodies with higher quality, better controllability and enhanced structure. Demos and source code are available at https://lichaiustc.github.io/CSL-L2M/.
* Accepted at AAAI-25
Via

Dec 11, 2024
Abstract:Automatically generating realistic musical performance motion can greatly enhance digital media production, often involving collaboration between professionals and musicians. However, capturing the intricate body, hand, and finger movements required for accurate musical performances is challenging. Existing methods often fall short due to the complex mapping between audio and motion, typically requiring additional inputs like scores or MIDI data. In this work, we present SyncViolinist, a multi-stage end-to-end framework that generates synchronized violin performance motion solely from audio input. Our method overcomes the challenge of capturing both global and fine-grained performance features through two key modules: a bowing/fingering module and a motion generation module. The bowing/fingering module extracts detailed playing information from the audio, which the motion generation module uses to create precise, coordinated body motions reflecting the temporal granularity and nature of the violin performance. We demonstrate the effectiveness of SyncViolinist with significantly improved qualitative and quantitative results from unseen violin performance audio, outperforming state-of-the-art methods. Extensive subjective evaluations involving professional violinists further validate our approach. The code and dataset are available at https://github.com/Kakanat/SyncViolinist.
* 10 pages, 7 figures, 6 tables, WACV 2025
Via

Jan 03, 2025
Abstract:Beginner musicians often struggle to identify specific errors in their performances, such as playing incorrect notes or rhythms. There are two limitations in existing tools for music error detection: (1) Existing approaches rely on automatic alignment; therefore, they are prone to errors caused by small deviations between alignment targets.; (2) There is a lack of sufficient data to train music error detection models, resulting in over-reliance on heuristics. To address (1), we propose a novel transformer model, Polytune, that takes audio inputs and outputs annotated music scores. This model can be trained end-to-end to implicitly align and compare performance audio with music scores through latent space representations. To address (2), we present a novel data generation technique capable of creating large-scale synthetic music error datasets. Our approach achieves a 64.1% average Error Detection F1 score, improving upon prior work by 40 percentage points across 14 instruments. Additionally, compared with existing transcription methods repurposed for music error detection, our model can handle multiple instruments. Our source code and datasets are available at https://github.com/ben2002chou/Polytune.
* AAAI 2025
Via

Jan 17, 2025
Abstract:This paper presents an integrated system that transforms symbolic music scores into expressive piano performance audio. By combining a Transformer-based Expressive Performance Rendering (EPR) model with a fine-tuned neural MIDI synthesiser, our approach directly generates expressive audio performances from score inputs. To the best of our knowledge, this is the first system to offer a streamlined method for converting score MIDI files lacking expression control into rich, expressive piano performances. We conducted experiments using subsets of the ATEPP dataset, evaluating the system with both objective metrics and subjective listening tests. Our system not only accurately reconstructs human-like expressiveness, but also captures the acoustic ambience of environments such as concert halls and recording studios. Additionally, the proposed system demonstrates its ability to achieve musical expressiveness while ensuring good audio quality in its outputs.
* Accepted by ICASSP 2025
Via

Jan 06, 2025
Abstract:Binaural audio generation (BAG) aims to convert monaural audio to stereo audio using visual prompts, requiring a deep understanding of spatial and semantic information. However, current models risk overfitting to room environments and lose fine-grained spatial details. In this paper, we propose a new audio-visual binaural generation model incorporating an audio-visual conditional normalisation layer that dynamically aligns the mean and variance of the target difference audio features using visual context, along with a new contrastive learning method to enhance spatial sensitivity by mining negative samples from shuffled visual features. We also introduce a cost-efficient way to utilise test-time augmentation in video data to enhance performance. Our approach achieves state-of-the-art generation accuracy on the FAIR-Play and MUSIC-Stereo benchmarks.
Via
