What is autonomous cars? Autonomous cars are self-driving vehicles that use artificial intelligence (AI) and sensors to navigate and operate without human intervention, using high-resolution cameras and lidars that detect what happens in the car's immediate surroundings. They have the potential to revolutionize transportation by improving safety, efficiency, and accessibility.
Papers and Code
Sep 04, 2024
Abstract:Uncertainty estimation is a necessary component when implementing AI in high-risk settings, such as autonomous cars, medicine, or insurances. Large Language Models (LLMs) have seen a surge in popularity in recent years, but they are subject to hallucinations, which may cause serious harm in high-risk settings. Despite their success, LLMs are expensive to train and run: they need a large amount of computations and memory, preventing the use of ensembling methods in practice. In this work, we present a novel method that allows for fast and memory-friendly training of LLM ensembles. We show that the resulting ensembles can detect hallucinations and are a viable approach in practice as only one GPU is needed for training and inference.
* 5 pages, 3 figures
Via

Oct 21, 2024
Abstract:Prevailing wisdom asserts that one cannot rely on the cloud for critical real-time control systems like self-driving cars. We argue that we can, and must. Following the trends of increasing model sizes, improvements in hardware, and evolving mobile networks, we identify an opportunity to offload parts of time-sensitive and latency-critical compute to the cloud. Doing so requires carefully allocating bandwidth to meet strict latency SLOs, while maximizing benefit to the car.
* 6 pages
Via

Nov 07, 2024
Abstract:Developing autonomous vehicles that can navigate complex environments with human-level safety and efficiency is a central goal in self-driving research. A common approach to achieving this is imitation learning, where agents are trained to mimic human expert demonstrations collected from real-world driving scenarios. However, discrepancies between human perception and the self-driving car's sensors can introduce an \textit{imitation gap}, leading to imitation learning failures. In this work, we introduce \textbf{IGDrivSim}, a benchmark built on top of the Waymax simulator, designed to investigate the effects of the imitation gap in learning autonomous driving policy from human expert demonstrations. Our experiments show that this perception gap between human experts and self-driving agents can hinder the learning of safe and effective driving behaviors. We further show that combining imitation with reinforcement learning, using a simple penalty reward for prohibited behaviors, effectively mitigates these failures. Our code is open-sourced at: https://github.com/clemgris/IGDrivSim.git.
* 8 pages, 4 figures, 1 table
Via

Aug 21, 2024
Abstract:The paper presents a vision-based obstacle avoidance strategy for lightweight self-driving cars that can be run on a CPU-only device using a single RGB-D camera. The method consists of two steps: visual perception and path planning. The visual perception part uses ORBSLAM3 enhanced with optical flow to estimate the car's poses and extract rich texture information from the scene. In the path planning phase, we employ a method combining a control Lyapunov function and control barrier function in the form of quadratic program (CLF-CBF-QP) together with an obstacle shape reconstruction process (SRP) to plan safe and stable trajectories. To validate the performance and robustness of the proposed method, simulation experiments were conducted with a car in various complex indoor environments using the Gazebo simulation environment. Our method can effectively avoid obstacles in the scenes. The proposed algorithm outperforms benchmark algorithms in achieving more stable and shorter trajectories across multiple simulated scenes.
* 16 pages; Submitted to a journal
Via

Aug 27, 2024
Abstract:In recent years, the number and importance of autonomous racing leagues, and consequently the number of studies on them, has been growing. The seamless integration between different series has gained attention due to the scene's diversity. However, the high cost of full scale racing makes it a more accessible development model, to research at smaller form factors and scale up the achieved results. This paper presents a scalable architecture designed for autonomous racing that emphasizes modularity, adaptability to diverse configurations, and the ability to supervise parallel execution of pipelines that allows the use of different dynamic strategies. The system showcased consistent racing performance across different environments, demonstrated through successful participation in two relevant competitions. The results confirm the architecture's scalability and versatility, providing a robust foundation for the development of competitive autonomous racing systems. The successful application in real-world scenarios validates its practical effectiveness and highlights its potential for future advancements in autonomous racing technology.
* 2024 IEEE Intelligent Vehicles Symposium (IV), Jeju Island, Korea,
Republic of, 2024, pp. 264-271
Via

Aug 27, 2024
Abstract:This paper proposes a control technique for autonomous RC car racing. The presented method does not require any map-building phase beforehand since it operates only local path planning on the actual LiDAR point cloud. Racing control algorithms must have the capability to be optimized to the actual track layout for minimization of lap time. In the examined one, it is guaranteed with the improvement of the Stanley controller with additive control components to stabilize the movement in both low and high-speed ranges, and with the integration of an adaptive lookahead point to induce sharp and dynamic cornering for traveled distance reduction. The developed method is tested on a 1/10-sized RC car, and the tuning procedure from a base solution to the optimal setting in a real F1Tenth race is presented. Furthermore, the proposed method is evaluated with a comparison to a more simple reactive method, and in parallel to a more complex optimization-based technique that involves offline map building the global optimal trajectory calculation. The performance of the proposed method compared to the latter, referring to the lap time, is that the proposed one has only 8% lower average speed. This demonstrates that with appropriate tuning, a local planning-based method can be comparable with a more complex optimization-based one. Thus, the performance gap is lower than 10% from the state-of-the-art method. Moreover, the proposed technique has significantly higher similarity to real scenarios, therefore the results can be interesting in the context of automotive industry.
* 2024 IEEE Intelligent Vehicles Symposium (IV), Jeju Island, Korea,
Republic of, 2024, pp. 252-257
Via

Sep 10, 2024
Abstract:Explanations for autonomous vehicle (AV) decisions may build trust, however, explanations can contain errors. In a simulated driving study (n = 232), we tested how AV explanation errors, driving context characteristics (perceived harm and driving difficulty), and personal traits (prior trust and expertise) affected a passenger's comfort in relying on an AV, preference for control, confidence in the AV's ability, and explanation satisfaction. Errors negatively affected all outcomes. Surprisingly, despite identical driving, explanation errors reduced ratings of the AV's driving ability. Severity and potential harm amplified the negative impact of errors. Contextual harm and driving difficulty directly impacted outcome ratings and influenced the relationship between errors and outcomes. Prior trust and expertise were positively associated with outcome ratings. Results emphasize the need for accurate, contextually adaptive, and personalized AV explanations to foster trust, reliance, satisfaction, and confidence. We conclude with design, research, and deployment recommendations for trustworthy AV explanation systems.
* 23 pages, 4 figures
Via

Nov 25, 2024
Abstract:In the field of autonomous surface vehicles (ASVs), devising decision-making and obstacle avoidance solutions that address maritime COLREGs (Collision Regulations), primarily defined for human operators, has long been a pressing challenge. Recent advancements in explainable Artificial Intelligence (AI) and machine learning have shown promise in enabling human-like decision-making. Notably, significant developments have occurred in the application of Large Language Models (LLMs) to the decision-making of complex systems, such as self-driving cars. The textual and somewhat ambiguous nature of COLREGs (from an algorithmic perspective), however, poses challenges that align well with the capabilities of LLMs, suggesting that LLMs may become increasingly suitable for this application soon. This paper presents and demonstrates the first application of LLM-based decision-making and control for ASVs. The proposed method establishes a high-level decision-maker that uses online collision risk indices and key measurements to make decisions for safe manoeuvres. A tailored design and runtime structure is developed to support training and real-time action generation on a realistic ASV model. Local planning and control algorithms are integrated to execute the commands for waypoint following and collision avoidance at a lower level. To the authors' knowledge, this study represents the first attempt to apply explainable AI to the dynamic control problem of maritime systems recognising the COLREGs rules, opening new avenues for research in this challenging area. Results obtained across multiple test scenarios demonstrate the system's ability to maintain online COLREGs compliance, accurate waypoint tracking, and feasible control, while providing human-interpretable reasoning for each decision.
Via

Sep 30, 2024
Abstract:The next ubiquitous computing platform, following personal computers and smartphones, is poised to be inherently autonomous, encompassing technologies like drones, robots, and self-driving cars. Ensuring reliability for these autonomous machines is critical. However, current resiliency solutions make fundamental trade-offs between reliability and cost, resulting in significant overhead in performance, energy consumption, and chip area. This is due to the "one-size-fits-all" approach commonly used, where the same protection scheme is applied throughout the entire software computing stack. This paper presents the key insight that to achieve high protection coverage with minimal cost, we must leverage the inherent variations in robustness across different layers of the autonomous machine software stack. Specifically, we demonstrate that various nodes in this complex stack exhibit different levels of robustness against hardware faults. Our findings reveal that the front-end of an autonomous machine's software stack tends to be more robust, whereas the back-end is generally more vulnerable. Building on these inherent robustness differences, we propose a Vulnerability-Adaptive Protection (VAP) design paradigm. In this paradigm, the allocation of protection resources - whether spatially (e.g., through modular redundancy) or temporally (e.g., via re-execution) - is made inversely proportional to the inherent robustness of tasks or algorithms within the autonomous machine system. Experimental results show that VAP provides high protection coverage while maintaining low overhead in both autonomous vehicle and drone systems.
* Communications of the ACM (CACM), Research and Advances, Vol 67,
No.9, September 2024. ACM Link: https://dl.acm.org/doi/pdf/10.1145/3647638
Via

Aug 27, 2024
Abstract:Object detection and global localization play a crucial role in robotics, spanning across a great spectrum of applications from autonomous cars to multi-layered 3D Scene Graphs for semantic scene understanding. This article proposes BOX3D, a novel multi-modal and lightweight scheme for localizing objects of interest by fusing the information from RGB camera and 3D LiDAR. BOX3D is structured around a three-layered architecture, building up from the local perception of the incoming sequential sensor data to the global perception refinement that covers for outliers and the general consistency of each object's observation. More specifically, the first layer handles the low-level fusion of camera and LiDAR data for initial 3D bounding box extraction. The second layer converts each LiDAR's scan 3D bounding boxes to the world coordinate frame and applies a spatial pairing and merging mechanism to maintain the uniqueness of objects observed from different viewpoints. Finally, BOX3D integrates the third layer that supervises the consistency of the results on the global map iteratively, using a point-to-voxel comparison for identifying all points in the global map that belong to the object. Benchmarking results of the proposed novel architecture are showcased in multiple experimental trials on public state-of-the-art large-scale dataset of urban environments.
* Presented in MED 2024
Via
