Topic:Text Classification
What is Text Classification? Text classification is the process of categorizing text documents into predefined categories or labels.
Papers and Code
May 16, 2025
Abstract:This paper presents an end-to-end suite for multilingual information extraction and processing from image-based documents. The system uses Optical Character Recognition (Tesseract) to extract text in languages such as English, Hindi, and Tamil, and then a pipeline involving large language model APIs (Gemini) for cross-lingual translation, abstractive summarization, and re-translation into a target language. Additional modules add sentiment analysis (TensorFlow), topic classification (Transformers), and date extraction (Regex) for better document comprehension. Made available in an accessible Gradio interface, the current research shows a real-world application of libraries, models, and APIs to close the language gap and enhance access to information in image media across different linguistic environments
* 8 pages, 7 figures, direct arXiv submission
Via

May 13, 2025
Abstract:Metabolic syndrome (MetS) is a medication condition characterized by abdominal obesity, insulin resistance, hypertension and hyperlipidemia. It increases the risk of majority of chronic diseases, including type 2 diabetes mellitus, and affects about one quarter of the global population. Therefore, early detection and timely intervention for MetS are crucial. Standard diagnosis for MetS components requires blood tests conducted within medical institutions. However, it is frequently underestimated, leading to unmet need for care for MetS population. This study aims to use the least physiological data and free texts about exercises related activities, which are obtained easily in daily life, to diagnosis MetS. We collected the data from 40 volunteers in a nursing home and used data augmentation to reduce the imbalance. We propose a deep learning framework for classifying MetS that integrates natural language processing (NLP) and exercise monitoring. The results showed that the best model reported a high positive result (AUROC=0.806 and REC=76.3%) through 3-fold cross-validation. Feature importance analysis revealed that text and minimum heart rate on a daily basis contribute the most in the classification of MetS. This study demonstrates the potential application of data that are easily measurable in daily life for the early diagnosis of MetS, which could contribute to reducing the cost of screening and management for MetS population.
Via

May 23, 2025
Abstract:Vision-language models (VLMs) have recently been integrated into multiple instance learning (MIL) frameworks to address the challenge of few-shot, weakly supervised classification of whole slide images (WSIs). A key trend involves leveraging multi-scale information to better represent hierarchical tissue structures. However, existing methods often face two key limitations: (1) insufficient modeling of interactions within the same modalities across scales (e.g., 5x and 20x) and (2) inadequate alignment between visual and textual modalities on the same scale. To address these gaps, we propose HiVE-MIL, a hierarchical vision-language framework that constructs a unified graph consisting of (1) parent-child links between coarse (5x) and fine (20x) visual/textual nodes to capture hierarchical relationships, and (2) heterogeneous intra-scale edges linking visual and textual nodes on the same scale. To further enhance semantic consistency, HiVE-MIL incorporates a two-stage, text-guided dynamic filtering mechanism that removes weakly correlated patch-text pairs, and introduces a hierarchical contrastive loss to align textual semantics across scales. Extensive experiments on TCGA breast, lung, and kidney cancer datasets demonstrate that HiVE-MIL consistently outperforms both traditional MIL and recent VLM-based MIL approaches, achieving gains of up to 4.1% in macro F1 under 16-shot settings. Our results demonstrate the value of jointly modeling hierarchical structure and multimodal alignment for efficient and scalable learning from limited pathology data. The code is available at https://github.com/bryanwong17/HiVE-MIL
Via

May 18, 2025
Abstract:We introduce the first method for translating text embeddings from one vector space to another without any paired data, encoders, or predefined sets of matches. Our unsupervised approach translates any embedding to and from a universal latent representation (i.e., a universal semantic structure conjectured by the Platonic Representation Hypothesis). Our translations achieve high cosine similarity across model pairs with different architectures, parameter counts, and training datasets. The ability to translate unknown embeddings into a different space while preserving their geometry has serious implications for the security of vector databases. An adversary with access only to embedding vectors can extract sensitive information about the underlying documents, sufficient for classification and attribute inference.
Via

May 21, 2025
Abstract:Large Language Models (LLMs) encounter significant challenges in long-sequence inference due to computational inefficiency and redundant processing, driving interest in context compression techniques. Existing methods often rely on token importance to perform hard local compression or encode context into latent representations for soft global compression. However, the uneven distribution of textual content relevance and the diversity of demands for user instructions mean these approaches frequently lead to the loss of potentially valuable information. To address this, we propose $\textbf{Hy}$brid $\textbf{Co}$ntext $\textbf{Co}$mpression (HyCo$_2$) for LLMs, which integrates both global and local perspectives to guide context compression while retaining both the essential semantics and critical details for task completion. Specifically, we employ a hybrid adapter to refine global semantics with the global view, based on the observation that different adapters excel at different tasks. Then we incorporate a classification layer that assigns a retention probability to each context token based on the local view, determining whether it should be retained or discarded. To foster a balanced integration of global and local compression, we introduce auxiliary paraphrasing and completion pretraining before instruction tuning. This promotes a synergistic integration that emphasizes instruction-relevant information while preserving essential local details, ultimately balancing local and global information retention in context compression. Experiments show that our HyCo$_2$ method significantly enhances long-text reasoning while reducing token usage. It improves the performance of various LLM series by an average of 13.1\% across seven knowledge-intensive QA benchmarks. Moreover, HyCo$_2$ matches the performance of uncompressed methods while reducing token consumption by 88.8\%.
Via

May 16, 2025
Abstract:Recently, large-scale pre-trained speech encoders and Large Language Models (LLMs) have been released, which show state-of-the-art performance on a range of spoken language processing tasks including Automatic Speech Recognition (ASR). To effectively combine both models for better performance, continuous speech prompts, and ASR error correction have been adopted. However, these methods are prone to suboptimal performance or are inflexible. In this paper, we propose a new paradigm, LegoSLM, that bridges speech encoders and LLMs using the ASR posterior matrices. The speech encoder is trained to generate Connectionist Temporal Classification (CTC) posteriors over the LLM vocabulary, which are used to reconstruct pseudo-audio embeddings by computing a weighted sum of the LLM input embeddings. These embeddings are concatenated with text embeddings in the LLM input space. Using the well-performing USM and Gemma models as an example, we demonstrate that our proposed LegoSLM method yields good performance on both ASR and speech translation tasks. By connecting USM with Gemma models, we can get an average of 49% WERR over the USM-CTC baseline on 8 MLS testsets. The trained model also exhibits modularity in a range of settings -- after fine-tuning the Gemma model weights, the speech encoder can be switched and combined with the LLM in a zero-shot fashion. Additionally, we propose to control the decode-time influence of the USM and LLM using a softmax temperature, which shows effectiveness in domain adaptation.
Via

May 20, 2025
Abstract:Fine-grained sentiment analysis (FGSA) aims to identify sentiment polarity toward specific aspects within a text, enabling more precise opinion mining in domains such as product reviews and social media. However, traditional FGSA approaches often require task-specific architectures and extensive annotated data, limiting their generalization and scalability. To address these challenges, we propose PL-FGSA, a unified prompt learning-based framework implemented using the MindSpore platform, which integrates prompt design with a lightweight TextCNN backbone. Our method reformulates FGSA as a multi-task prompt-augmented generation problem, jointly tackling aspect extraction, sentiment classification, and causal explanation in a unified paradigm. By leveraging prompt-based guidance, PL-FGSA enhances interpretability and achieves strong performance under both full-data and low-resource conditions. Experiments on three benchmark datasets-SST-2, SemEval-2014 Task 4, and MAMS-demonstrate that our model consistently outperforms traditional fine-tuning methods and achieves F1-scores of 0.922, 0.694, and 0.597, respectively. These results validate the effectiveness of prompt-based generalization and highlight the practical value of PL-FGSA for real-world sentiment analysis tasks.
Via

May 14, 2025
Abstract:Granite-speech LLMs are compact and efficient speech language models specifically designed for English ASR and automatic speech translation (AST). The models were trained by modality aligning the 2B and 8B parameter variants of granite-3.3-instruct to speech on publicly available open-source corpora containing audio inputs and text targets consisting of either human transcripts for ASR or automatically generated translations for AST. Comprehensive benchmarking shows that on English ASR, which was our primary focus, they outperform several competitors' models that were trained on orders of magnitude more proprietary data, and they keep pace on English-to-X AST for major European languages, Japanese, and Chinese. The speech-specific components are: a conformer acoustic encoder using block attention and self-conditioning trained with connectionist temporal classification, a windowed query-transformer speech modality adapter used to do temporal downsampling of the acoustic embeddings and map them to the LLM text embedding space, and LoRA adapters to further fine-tune the text LLM. Granite-speech-3.3 operates in two modes: in speech mode, it performs ASR and AST by activating the encoder, projector, and LoRA adapters; in text mode, it calls the underlying granite-3.3-instruct model directly (without LoRA), essentially preserving all the text LLM capabilities and safety. Both models are freely available on HuggingFace (https://huggingface.co/ibm-granite/granite-speech-3.3-2b and https://huggingface.co/ibm-granite/granite-speech-3.3-8b) and can be used for both research and commercial purposes under a permissive Apache 2.0 license.
* 7 pages, 9 figures
Via

May 14, 2025
Abstract:The success of deep learning in computer vision over the past decade has hinged on large labeled datasets and strong pretrained models. In data-scarce settings, the quality of these pretrained models becomes crucial for effective transfer learning. Image classification and self-supervised learning have traditionally been the primary methods for pretraining CNNs and transformer-based architectures. Recently, the rise of text-to-image generative models, particularly those using denoising diffusion in a latent space, has introduced a new class of foundational models trained on massive, captioned image datasets. These models' ability to generate realistic images of unseen content suggests they possess a deep understanding of the visual world. In this work, we present Marigold, a family of conditional generative models and a fine-tuning protocol that extracts the knowledge from pretrained latent diffusion models like Stable Diffusion and adapts them for dense image analysis tasks, including monocular depth estimation, surface normals prediction, and intrinsic decomposition. Marigold requires minimal modification of the pre-trained latent diffusion model's architecture, trains with small synthetic datasets on a single GPU over a few days, and demonstrates state-of-the-art zero-shot generalization. Project page: https://marigoldcomputervision.github.io
* Journal extension of our CVPR 2024 paper, featuring new tasks,
improved efficiency, high-resolution capabilities, and enhanced accessibility
Via

May 19, 2025
Abstract:Despite major advances in surgical brain-to-text (B2T), i.e. transcribing speech from invasive brain recordings, non-invasive alternatives have yet to surpass even chance on standard metrics. This remains a barrier to building a non-invasive brain-computer interface (BCI) capable of restoring communication in paralysed individuals without surgery. Here, we present the first non-invasive B2T result that significantly exceeds these critical baselines, raising BLEU by $1.4\mathrm{-}2.6\times$ over prior work. This result is driven by three contributions: (1) we extend recent word-classification models with LLM-based rescoring, transforming single-word predictors into closed-vocabulary B2T systems; (2) we introduce a predictive in-filling approach to handle out-of-vocabulary (OOV) words, substantially expanding the effective vocabulary; and (3) we demonstrate, for the first time, how to scale non-invasive B2T models across datasets, unlocking deep learning at scale and improving accuracy by $2.1\mathrm{-}2.3\times$. Through these contributions, we offer new insights into the roles of data quality and vocabulary size. Together, our results remove a major obstacle to realising practical non-invasive B2T systems.
* 27 pages, 10 figures, 10 tables. Under review
Via
