Topic:Text Classification
What is Text Classification? Text classification is the process of categorizing text documents into predefined categories or labels.
Papers and Code
May 21, 2025
Abstract:Effective cross-lingual transfer remains a critical challenge in scaling the benefits of large language models from high-resource to low-resource languages. Towards this goal, prior studies have explored many approaches to combine task knowledge from task-specific data in a (high-resource) source language and language knowledge from unlabeled text in a (low-resource) target language. One notable approach proposed composable sparse fine-tuning (SFT) for cross-lingual transfer that learns task-specific and language-specific sparse masks to select a subset of the pretrained model's parameters that are further fine-tuned. These sparse fine-tuned vectors (SFTs) are subsequently composed with the pretrained model to facilitate zero-shot cross-lingual transfer to a task in a target language, using only task-specific data from a source language. These sparse masks for SFTs were identified using a simple magnitude-based pruning. In our work, we introduce DeFT-X, a novel composable SFT approach that denoises the weight matrices of a pretrained model before magnitude pruning using singular value decomposition, thus yielding more robust SFTs. We evaluate DeFT-X on a diverse set of extremely low-resource languages for sentiment classification (NusaX) and natural language inference (AmericasNLI) and demonstrate that it performs at par or outperforms SFT and other prominent cross-lingual transfer baselines.
Via

May 14, 2025
Abstract:The success of deep learning in computer vision over the past decade has hinged on large labeled datasets and strong pretrained models. In data-scarce settings, the quality of these pretrained models becomes crucial for effective transfer learning. Image classification and self-supervised learning have traditionally been the primary methods for pretraining CNNs and transformer-based architectures. Recently, the rise of text-to-image generative models, particularly those using denoising diffusion in a latent space, has introduced a new class of foundational models trained on massive, captioned image datasets. These models' ability to generate realistic images of unseen content suggests they possess a deep understanding of the visual world. In this work, we present Marigold, a family of conditional generative models and a fine-tuning protocol that extracts the knowledge from pretrained latent diffusion models like Stable Diffusion and adapts them for dense image analysis tasks, including monocular depth estimation, surface normals prediction, and intrinsic decomposition. Marigold requires minimal modification of the pre-trained latent diffusion model's architecture, trains with small synthetic datasets on a single GPU over a few days, and demonstrates state-of-the-art zero-shot generalization. Project page: https://marigoldcomputervision.github.io
* Journal extension of our CVPR 2024 paper, featuring new tasks,
improved efficiency, high-resolution capabilities, and enhanced accessibility
Via

May 14, 2025
Abstract:Dermatological diagnosis represents a complex multimodal challenge that requires integrating visual features with specialized clinical knowledge. While vision-language pretraining (VLP) has advanced medical AI, its effectiveness in dermatology is limited by text length constraints and the lack of structured texts. In this paper, we introduce MAKE, a Multi-Aspect Knowledge-Enhanced vision-language pretraining framework for zero-shot dermatological tasks. Recognizing that comprehensive dermatological descriptions require multiple knowledge aspects that exceed standard text constraints, our framework introduces: (1) a multi-aspect contrastive learning strategy that decomposes clinical narratives into knowledge-enhanced sub-texts through large language models, (2) a fine-grained alignment mechanism that connects subcaptions with diagnostically relevant image features, and (3) a diagnosis-guided weighting scheme that adaptively prioritizes different sub-captions based on clinical significance prior. Through pretraining on 403,563 dermatological image-text pairs collected from education resources, MAKE significantly outperforms state-of-the-art VLP models on eight datasets across zero-shot skin disease classification, concept annotation, and cross-modal retrieval tasks. Our code will be made publicly available at https: //github.com/SiyuanYan1/MAKE.
* MICCAI2025 early acceptance; First two authors contribute equally
Via

May 16, 2025
Abstract:Minimally invasive surgery (MIS) presents significant visual and technical challenges, including surgical instrument classification and understanding surgical action involving instruments, verbs, and anatomical targets. While many machine learning-based methods have been developed for surgical understanding, they typically rely on procedure- and task-specific models trained on small, manually annotated datasets. In contrast, the recent success of vision-language models (VLMs) trained on large volumes of raw image-text pairs has demonstrated strong adaptability to diverse visual data and a range of downstream tasks. This opens meaningful research questions: how well do these general-purpose VLMs perform in the surgical domain? In this work, we explore those questions by benchmarking several VLMs across diverse surgical datasets, including general laparoscopic procedures and endoscopic submucosal dissection, to assess their current capabilities and limitations. Our benchmark reveals key gaps in the models' ability to consistently link language to the correct regions in surgical scenes.
Via

May 08, 2025
Abstract:Contrastive Language-Image Pre-training (CLIP) excels in multimodal tasks such as image-text retrieval and zero-shot classification but struggles with fine-grained understanding due to its focus on coarse-grained short captions. To address this, we propose Fine-Grained CLIP (FG-CLIP), which enhances fine-grained understanding through three key innovations. First, we leverage large multimodal models to generate 1.6 billion long caption-image pairs for capturing global-level semantic details. Second, a high-quality dataset is constructed with 12 million images and 40 million region-specific bounding boxes aligned with detailed captions to ensure precise, context-rich representations. Third, 10 million hard fine-grained negative samples are incorporated to improve the model's ability to distinguish subtle semantic differences. Corresponding training methods are meticulously designed for these data. Extensive experiments demonstrate that FG-CLIP outperforms the original CLIP and other state-of-the-art methods across various downstream tasks, including fine-grained understanding, open-vocabulary object detection, image-text retrieval, and general multimodal benchmarks. These results highlight FG-CLIP's effectiveness in capturing fine-grained image details and improving overall model performance. The related data, code, and models are available at https://github.com/360CVGroup/FG-CLIP.
* Accepted at ICML 2025
Via

May 15, 2025
Abstract:This paper addresses fine-tuning Large Language Models (LLMs) for function calling tasks when real user interaction data is unavailable. In digital content creation tools, where users express their needs through natural language queries that must be mapped to API calls, the lack of real-world task-specific data and privacy constraints for training on it necessitate synthetic data generation. Existing approaches to synthetic data generation fall short in diversity and complexity, failing to replicate real-world data distributions and leading to suboptimal performance after LLM fine-tuning. We present a novel router-based architecture that leverages domain resources like content metadata and structured knowledge graphs, along with text-to-text and vision-to-text language models to generate high-quality synthetic training data. Our architecture's flexible routing mechanism enables synthetic data generation that matches observed real-world distributions, addressing a fundamental limitation of traditional approaches. Evaluation on a comprehensive set of real user queries demonstrates significant improvements in both function classification accuracy and API parameter selection. Models fine-tuned with our synthetic data consistently outperform traditional approaches, establishing new benchmarks for function calling tasks.
* https://aclanthology.org/2025.knowledgenlp-1.10/ KnowledgeNLP 2025
* Proceedings of the 4th International Workshop on Knowledge-Augmented
Methods for Natural Language Processing
Via

May 06, 2025
Abstract:Accurate classification of focal liver lesions is crucial for diagnosis and treatment in hepatology. However, traditional supervised deep learning models depend on large-scale annotated datasets, which are often limited in medical imaging. Recently, Vision-Language models (VLMs) such as Contrastive Language-Image Pre-training model (CLIP) has been applied to image classifications. Compared to the conventional convolutional neural network (CNN), which classifiers image based on visual information only, VLM leverages multimodal learning with text and images, allowing it to learn effectively even with a limited amount of labeled data. Inspired by CLIP, we pro-pose a Liver-VLM, a model specifically designed for focal liver lesions (FLLs) classification. First, Liver-VLM incorporates class information into the text encoder without introducing additional inference overhead. Second, by calculating the pairwise cosine similarities between image and text embeddings and optimizing the model with a cross-entropy loss, Liver-VLM ef-fectively aligns image features with class-level text features. Experimental results on MPCT-FLLs dataset demonstrate that the Liver-VLM model out-performs both the standard CLIP and MedCLIP models in terms of accuracy and Area Under the Curve (AUC). Further analysis shows that using a lightweight ResNet18 backbone enhances classification performance, particularly under data-constrained conditions.
* 9 pages,4 figures, 4 tables,Innovation in Medicine and Healthcare
Proceedings of 13th KES-InMed 2025
Via

May 12, 2025
Abstract:Spoken language understanding (SLU) tasks involve diverse skills that probe the information extraction, classification and/or generation capabilities of models. In this setting, task-specific training data may not always be available. While traditional task-specific SLU models are unable to cater to such requirements, the speech-text large language models (LLMs) offer a promising alternative with emergent abilities. However, out of-the-box, our evaluations indicate that the zero/few-shot performance of prominent open-source speech-text LLMs on SLU tasks are not up to the mark. In this paper, we introduce a novel approach to robust task-agnostic fine-tuning using randomized class labels. With this proposed fine-tuning, we illustrate that the performance of the speech-text LLMs on an unseen task is significantly improved over standard approaches. Critically, the proposed approach avoids the requirement of task-specific data annotations for enabling new tasks in speech-text LLMs.
Via

May 09, 2025
Abstract:The scarcity of high-quality multimodal biomedical data limits the ability to effectively fine-tune pretrained Large Language Models (LLMs) for specialized biomedical tasks. To address this challenge, we introduce MINT (Multimodal Integrated kNowledge Transfer), a framework that aligns unimodal large decoder models with domain-specific decision patterns from multimodal biomedical data through preference optimization. While MINT supports different optimization techniques, we primarily implement it with the Odds Ratio Preference Optimization (ORPO) framework as its backbone. This strategy enables the aligned LLMs to perform predictive tasks using text-only or image-only inputs while retaining knowledge learnt from multimodal data. MINT leverages an upstream multimodal machine learning (MML) model trained on high-quality multimodal data to transfer domain-specific insights to downstream text-only or image-only LLMs. We demonstrate its effectiveness through two key applications: (1) Rare genetic disease prediction from texts, where MINT uses a multimodal encoder model, trained on facial photos and clinical notes, to generate a preference dataset for aligning a lightweight Llama 3.2-3B-Instruct. Despite relying on text input only, the MINT-derived model outperforms models trained with SFT, RAG, or DPO, and even outperforms Llama 3.1-405B-Instruct. (2) Tissue type classification using cell nucleus images, where MINT uses a vision-language foundation model as the preference generator, containing knowledge learnt from both text and histopathological images to align downstream image-only models. The resulting MINT-derived model significantly improves the performance of Llama 3.2-Vision-11B-Instruct on tissue type classification. In summary, MINT provides an effective strategy to align unimodal LLMs with high-quality multimodal expertise through preference optimization.
* First Draft
Via

May 12, 2025
Abstract:Classroom discourse is an essential vehicle through which teaching and learning take place. Assessing different characteristics of discursive practices and linking them to student learning achievement enhances the understanding of teaching quality. Traditional assessments rely on manual coding of classroom observation protocols, which is time-consuming and costly. Despite many studies utilizing AI techniques to analyze classroom discourse at the utterance level, investigations into the evaluation of discursive practices throughout an entire lesson segment remain limited. To address this gap, our study proposes a novel text-centered multimodal fusion architecture to assess the quality of three discourse components grounded in the Global Teaching InSights (GTI) observation protocol: Nature of Discourse, Questioning, and Explanations. First, we employ attention mechanisms to capture inter- and intra-modal interactions from transcript, audio, and video streams. Second, a multi-task learning approach is adopted to jointly predict the quality scores of the three components. Third, we formulate the task as an ordinal classification problem to account for rating level order. The effectiveness of these designed elements is demonstrated through an ablation study on the GTI Germany dataset containing 92 videotaped math lessons. Our results highlight the dominant role of text modality in approaching this task. Integrating acoustic features enhances the model's consistency with human ratings, achieving an overall Quadratic Weighted Kappa score of 0.384, comparable to human inter-rater reliability (0.326). Our study lays the groundwork for the future development of automated discourse quality assessment to support teacher professional development through timely feedback on multidimensional discourse practices.
* The 18th International Conference on Educational Data Mining (EDM
2025)
Via
