Abstract:Metabolic syndrome (MetS) is a medication condition characterized by abdominal obesity, insulin resistance, hypertension and hyperlipidemia. It increases the risk of majority of chronic diseases, including type 2 diabetes mellitus, and affects about one quarter of the global population. Therefore, early detection and timely intervention for MetS are crucial. Standard diagnosis for MetS components requires blood tests conducted within medical institutions. However, it is frequently underestimated, leading to unmet need for care for MetS population. This study aims to use the least physiological data and free texts about exercises related activities, which are obtained easily in daily life, to diagnosis MetS. We collected the data from 40 volunteers in a nursing home and used data augmentation to reduce the imbalance. We propose a deep learning framework for classifying MetS that integrates natural language processing (NLP) and exercise monitoring. The results showed that the best model reported a high positive result (AUROC=0.806 and REC=76.3%) through 3-fold cross-validation. Feature importance analysis revealed that text and minimum heart rate on a daily basis contribute the most in the classification of MetS. This study demonstrates the potential application of data that are easily measurable in daily life for the early diagnosis of MetS, which could contribute to reducing the cost of screening and management for MetS population.
Abstract:Multi-modality image fusion (MMIF) aims to integrate complementary information from different modalities into a single fused image to represent the imaging scene and facilitate downstream visual tasks comprehensively. In recent years, significant progress has been made in MMIF tasks due to advances in deep neural networks. However, existing methods cannot effectively and efficiently extract modality-specific and modality-fused features constrained by the inherent local reductive bias (CNN) or quadratic computational complexity (Transformers). To overcome this issue, we propose a Mamba-based Dual-phase Fusion (MambaDFuse) model. Firstly, a dual-level feature extractor is designed to capture long-range features from single-modality images by extracting low and high-level features from CNN and Mamba blocks. Then, a dual-phase feature fusion module is proposed to obtain fusion features that combine complementary information from different modalities. It uses the channel exchange method for shallow fusion and the enhanced Multi-modal Mamba (M3) blocks for deep fusion. Finally, the fused image reconstruction module utilizes the inverse transformation of the feature extraction to generate the fused result. Through extensive experiments, our approach achieves promising fusion results in infrared-visible image fusion and medical image fusion. Additionally, in a unified benchmark, MambaDFuse has also demonstrated improved performance in downstream tasks such as object detection. Code with checkpoints will be available after the peer-review process.
Abstract:To address the issue of poor embedding performance in the knowledge graph of a programming design course, a joint represen-tation learning model that combines entity neighborhood infor-mation and description information is proposed. Firstly, a graph at-tention network is employed to obtain the features of entity neigh-boring nodes, incorporating relationship features to enrich the structural information. Next, the BERT-WWM model is utilized in conjunction with attention mechanisms to obtain the representation of entity description information. Finally, the final entity vector representation is obtained by combining the vector representations of entity neighborhood information and description information. Experimental results demonstrate that the proposed model achieves favorable performance on the knowledge graph dataset of the pro-gramming design course, outperforming other baseline models.