Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

BCSAT : A Benchmark Corpus for Sentiment Analysis in Telugu Using Word-level Annotations

Jul 04, 2018
Sreekavitha Parupalli, Vijjini Anvesh Rao, Radhika Mamidi

The presented work aims at generating a systematically annotated corpus that can support the enhancement of sentiment analysis tasks in Telugu using word-level sentiment annotations. From OntoSenseNet, we extracted 11,000 adjectives, 253 adverbs, 8483 verbs and sentiment annotation is being done by language experts. We discuss the methodology followed for the polarity annotations and validate the developed resource. This work aims at developing a benchmark corpus, as an extension to SentiWordNet, and baseline accuracy for a model where lexeme annotations are applied for sentiment predictions. The fundamental aim of this paper is to validate and study the possibility of utilizing machine learning algorithms, word-level sentiment annotations in the task of automated sentiment identification. Furthermore, accuracy is improved by annotating the bi-grams extracted from the target corpus.

* Accepted as Long Paper at Student Research Workshop in 56th Annual Meeting of the Association for Computational Linguistics, ACL-2018 

  Access Paper or Ask Questions

Sentiment Analysis of Twitter Data for Predicting Stock Market Movements

Oct 28, 2016
Venkata Sasank Pagolu, Kamal Nayan Reddy Challa, Ganapati Panda, Babita Majhi

Predicting stock market movements is a well-known problem of interest. Now-a-days social media is perfectly representing the public sentiment and opinion about current events. Especially, twitter has attracted a lot of attention from researchers for studying the public sentiments. Stock market prediction on the basis of public sentiments expressed on twitter has been an intriguing field of research. Previous studies have concluded that the aggregate public mood collected from twitter may well be correlated with Dow Jones Industrial Average Index (DJIA). The thesis of this work is to observe how well the changes in stock prices of a company, the rises and falls, are correlated with the public opinions being expressed in tweets about that company. Understanding author's opinion from a piece of text is the objective of sentiment analysis. The present paper have employed two different textual representations, Word2vec and N-gram, for analyzing the public sentiments in tweets. In this paper, we have applied sentiment analysis and supervised machine learning principles to the tweets extracted from twitter and analyze the correlation between stock market movements of a company and sentiments in tweets. In an elaborate way, positive news and tweets in social media about a company would definitely encourage people to invest in the stocks of that company and as a result the stock price of that company would increase. At the end of the paper, it is shown that a strong correlation exists between the rise and falls in stock prices with the public sentiments in tweets.

* 6 pages 4 figures Conference Paper 

  Access Paper or Ask Questions

Sentiment in New York City: A High Resolution Spatial and Temporal View

Aug 22, 2013
Karla Z. Bertrand, Maya Bialik, Kawandeep Virdee, Andreas Gros, Yaneer Bar-Yam

Measuring public sentiment is a key task for researchers and policymakers alike. The explosion of available social media data allows for a more time-sensitive and geographically specific analysis than ever before. In this paper we analyze data from the micro-blogging site Twitter and generate a sentiment map of New York City. We develop a classifier specifically tuned for 140-character Twitter messages, or tweets, using key words, phrases and emoticons to determine the mood of each tweet. This method, combined with geotagging provided by users, enables us to gauge public sentiment on extremely fine-grained spatial and temporal scales. We find that public mood is generally highest in public parks and lowest at transportation hubs, and locate other areas of strong sentiment such as cemeteries, medical centers, a jail, and a sewage facility. Sentiment progressively improves with proximity to Times Square. Periodic patterns of sentiment fluctuate on both a daily and a weekly scale: more positive tweets are posted on weekends than on weekdays, with a daily peak in sentiment around midnight and a nadir between 9:00 a.m. and noon.

* 12 pages, 5 figures 

  Access Paper or Ask Questions

A new ANEW: Evaluation of a word list for sentiment analysis in microblogs

Mar 15, 2011
Finn Årup Nielsen

Sentiment analysis of microblogs such as Twitter has recently gained a fair amount of attention. One of the simplest sentiment analysis approaches compares the words of a posting against a labeled word list, where each word has been scored for valence, -- a 'sentiment lexicon' or 'affective word lists'. There exist several affective word lists, e.g., ANEW (Affective Norms for English Words) developed before the advent of microblogging and sentiment analysis. I wanted to examine how well ANEW and other word lists performs for the detection of sentiment strength in microblog posts in comparison with a new word list specifically constructed for microblogs. I used manually labeled postings from Twitter scored for sentiment. Using a simple word matching I show that the new word list may perform better than ANEW, though not as good as the more elaborate approach found in SentiStrength.

* Proceedings of the ESWC2011 Workshop on 'Making Sense of Microposts': Big things come in small packages (2011) 93-98 
* 6 pages, 4 figures, 1 table, Submitted to "Making Sense of Microposts (#MSM2011)" 

  Access Paper or Ask Questions

Boost Phrase-level Polarity Labelling with Review-level Sentiment Classification

Feb 11, 2015
Yongfeng Zhang, Min Zhang, Yiqun Liu, Shaoping Ma

Sentiment analysis on user reviews helps to keep track of user reactions towards products, and make advices to users about what to buy. State-of-the-art review-level sentiment classification techniques could give pretty good precisions of above 90%. However, current phrase-level sentiment analysis approaches might only give sentiment polarity labelling precisions of around 70%~80%, which is far from satisfaction and restricts its application in many practical tasks. In this paper, we focus on the problem of phrase-level sentiment polarity labelling and attempt to bridge the gap between phrase-level and review-level sentiment analysis. We investigate the inconsistency between the numerical star ratings and the sentiment orientation of textual user reviews. Although they have long been treated as identical, which serves as a basic assumption in previous work, we find that this assumption is not necessarily true. We further propose to leverage the results of review-level sentiment classification to boost the performance of phrase-level polarity labelling using a novel constrained convex optimization framework. Besides, the framework is capable of integrating various kinds of information sources and heuristics, while giving the global optimal solution due to its convexity. Experimental results on both English and Chinese reviews show that our framework achieves high labelling precisions of up to 89%, which is a significant improvement from current approaches.

  Access Paper or Ask Questions

Identification of Bias Against People with Disabilities in Sentiment Analysis and Toxicity Detection Models

Nov 25, 2021
Pranav Narayanan Venkit, Shomir Wilson

Sociodemographic biases are a common problem for natural language processing, affecting the fairness and integrity of its applications. Within sentiment analysis, these biases may undermine sentiment predictions for texts that mention personal attributes that unbiased human readers would consider neutral. Such discrimination can have great consequences in the applications of sentiment analysis both in the public and private sectors. For example, incorrect inferences in applications like online abuse and opinion analysis in social media platforms can lead to unwanted ramifications, such as wrongful censoring, towards certain populations. In this paper, we address the discrimination against people with disabilities, PWD, done by sentiment analysis and toxicity classification models. We provide an examination of sentiment and toxicity analysis models to understand in detail how they discriminate PWD. We present the Bias Identification Test in Sentiments (BITS), a corpus of 1,126 sentences designed to probe sentiment analysis models for biases in disability. We use this corpus to demonstrate statistically significant biases in four widely used sentiment analysis tools (TextBlob, VADER, Google Cloud Natural Language API and DistilBERT) and two toxicity analysis models trained to predict toxic comments on Jigsaw challenges (Toxic comment classification and Unintended Bias in Toxic comments). The results show that all exhibit strong negative biases on sentences that mention disability. We publicly release BITS Corpus for others to identify potential biases against disability in any sentiment analysis tools and also to update the corpus to be used as a test for other sociodemographic variables as well.

  Access Paper or Ask Questions

Sentiment Uncertainty and Spam in Twitter Streams and Its Implications for General Purpose Realtime Sentiment Analysis

Sep 25, 2015
Nils Haldenwang, Oliver Vornberger

State of the art benchmarks for Twitter Sentiment Analysis do not consider the fact that for more than half of the tweets from the public stream a distinct sentiment cannot be chosen. This paper provides a new perspective on Twitter Sentiment Analysis by highlighting the necessity of explicitly incorporating uncertainty. Moreover, a dataset of high quality to evaluate solutions for this new problem is introduced and made publicly available.

* 3 pages, 1 figure, accepted at GSCL '15 

  Access Paper or Ask Questions

The Effect of Negators, Modals, and Degree Adverbs on Sentiment Composition

Dec 05, 2017
Svetlana Kiritchenko, Saif M. Mohammad

Negators, modals, and degree adverbs can significantly affect the sentiment of the words they modify. Often, their impact is modeled with simple heuristics; although, recent work has shown that such heuristics do not capture the true sentiment of multi-word phrases. We created a dataset of phrases that include various negators, modals, and degree adverbs, as well as their combinations. Both the phrases and their constituent content words were annotated with real-valued scores of sentiment association. Using phrasal terms in the created dataset, we analyze the impact of individual modifiers and the average effect of the groups of modifiers on overall sentiment. We find that the effect of modifiers varies substantially among the members of the same group. Furthermore, each individual modifier can affect sentiment words in different ways. Therefore, solutions based on statistical learning seem more promising than fixed hand-crafted rules on the task of automatic sentiment prediction.

* In Proceedings of the 7th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (WASSA), San Diego, California, 2016 

  Access Paper or Ask Questions

Pars-ABSA: an Aspect-based Sentiment Analysis dataset for Persian

Sep 17, 2019
Taha Shangipour Ataei, Kamyar Darvishi, Behrouz Minaei-Bidgoli, Sauleh Eetemadi

Due to the increased availability of online reviews, sentiment analysis had been witnessed a booming interest from the researchers. Sentiment analysis is a computational treatment of sentiment used to extract and understand the opinions of authors. While many systems were built to predict the sentiment of a document or a sentence, many others provide the necessary detail on various aspects of the entity (i.e. aspect-based sentiment analysis). Most of the available data resources were tailored to English and the other popular European languages. Although Persian is a language with more than 110 million speakers, to the best of our knowledge, there is a lack of public dataset on aspect-based sentiment analysis for Persian. This paper provides a manually annotated Persian dataset, Pars-ABSA, which is verified by 3 native Persian speakers. The dataset consists of 5,114 positive, 3,061 negative and 1,827 neutral data samples from 5,602 unique reviews. Moreover, as a baseline, this paper reports the performance of some state-of-the-art aspect-based sentiment analysis methods with a focus on deep learning, on Pars-ABSA. The obtained results are impressive compared to similar English state-of-the-art.

  Access Paper or Ask Questions

Explicit Interaction Network for Aspect Sentiment Triplet Extraction

Jun 21, 2021
Peiyi Wang, Lianzhe Huang, Tianyu Liu, Damai Dai, Runxin Xu, Houfeng Wang, Baobao Chang, Zhifang Sui

Aspect Sentiment Triplet Extraction (ASTE) aims to recognize targets, their sentiment polarities and opinions explaining the sentiment from a sentence. ASTE could be naturally divided into 3 atom subtasks, namely target detection, opinion detection and sentiment classification. We argue that the proper subtask combination, compositional feature extraction for target-opinion pairs, and interaction between subtasks would be the key to success. Prior work, however, may fail on `one-to-many' or `many-to-one' situations, or derive non-existent sentiment triplets due to defective subtask formulation, sub-optimal feature representation or the lack of subtask interaction. In this paper, we divide ASTE into target-opinion joint detection and sentiment classification subtasks, which is in line with human cognition, and correspondingly propose sequence encoder and table encoder. Table encoder extracts sentiment at token-pair level, so that the compositional feature between targets and opinions can be easily captured. To establish explicit interaction between subtasks, we utilize the table representation to guide the sequence encoding, and inject the sequence features back into the table encoder. Experiments show that our model outperforms state-of-the-art methods on six popular ASTE datasets.

  Access Paper or Ask Questions